

A project submitted as partial fulfillment for the requirements of the

degree of B.Sc. in Systems and Control Engineering

Submitted by:

Injad Amer Yaseen

Ahmed Farhan Mutlaq

Raad Abdalla Hassan

 May - 2018

Ministry of Higher Education

& Scientific Research

Ninevah University

College of Electronic Engineering

Department of

Systems and Control Engineering

Supervised by:

Mr.Salam Asmer

Mr. Mohammed Nasrat

Solar energy Introduction

2

stnotnoc
 Introduction ... 5 CHAPTER 1

1.1. Background ... 5

1.2. Objectives ... 5

 Literature view .. 6 CHAPTER 2

 methodology .. 8 CHAPTER 3

3.1. Principle of Buck-Boost converter ... 8

3.1.1 Mode 1 .. 8

3.1.2 Mode2 ... 10

3.2. Building model of transfers function for Buck-Boost converter .. 11

3.3. Implement the design in Simulink .. 12

3.4. Controller .. 13

3.4.1 PID controller ... 13

3.5. Tuning PID parameters using system identification... 18

 Result and discussion .. 21 CHAPTER 4

4.1. Open loop result ... 21

4.2. Closed loop result ... 23

 conclusion and future work ... 25 CHAPTER 5

5.1. conclusion ... 25

5.2. future work ... 25

3

List of tables
Table ‎3-1 list of components ... 12

Table ‎3-2 PID parameters .. 21

Table ‎4-1 open loop components ... 22

Table ‎4-2 open loop response .. 23

Table ‎4-3 close loop response ... 24

List of figures
Figure ‎3-1: Mode 1 when switch ON .. 9

Figure ‎3-2: Mode 2 when switch OFF .. 10

Figure ‎3-3 open loop diagram ... 12

Figure ‎3-4 Block Diagram of a Process under Control System .. 13

Figure ‎3-5PID as the Control System: ... 14

Figure ‎3-6 The P-Control .. 15

Figure ‎3-7 PID Control Block diagram ... 16

Figure ‎3-8 Response to Unit step of a D controller ... 17

Figure ‎3-9 Response to Unit step of an I control ... 18

Figure ‎3-10 Response to Unit step of a P controller ... 18

Figure ‎3-11 run simulation .. 19

Figure ‎3-12 plant can't be linearized ... 19

Figure ‎3-13 new plant identification ... 20

Figure ‎3-14 desired response setup ... 21

Figure ‎5-1 .. 25

file:///I:/Certification%20project/research/research/final_reaserch.docx%23_Toc514852733
file:///I:/Certification%20project/research/research/final_reaserch.docx%23_Toc514852734
file:///I:/Certification%20project/research/research/final_reaserch.docx%23_Toc514852747

4

Abstract
 Solar panels are widely used in the world and give output voltage proportional to the intensity

of the sunlight, so the output voltage is varying with respect to the day time (sum position in

the sky) and not useful if not regulated to a constant value.

 A buck-boost converter is a component found in solar panels which is used to regulate the

voltage output produced by these solar panels. This converter can be adjusted to produce

voltage with a larger or smaller value than the initial voltage. This experiment aims to create a

voltage output at a constant value of 12 V, with a range of voltage input of 10 to 50 V. The

voltage value produced by the converter is controlled by the pulse width produced by the PWM

(Pulse Width Modulation) generator. The pulse width produced by the PWM generator is

controlled by a PID controller, the controller is designed by MATLAB Simulink.

5

 Introduction CHAPTER 1

1.1. Background

Solar panels are widely used as an environmentally friendly electricity supply

It has the potential to cover all human energy needs [13], Photovoltaic (PV) panels are

widely used all over the world which are either distributed on roof tops or installed in

large power plants. It is very popular since it simple to install and relatively cost

effective. Unfortunately, a problem is often found, where in the voltage output

produced is not constant, mostly it need to be stored in storing cells (Batteries) so we

have to regulate the voltage to specified value and that process is done by DC-DC

converter as a voltage regulator.

Voltage regulator methodology is a constant dc voltage despite changes in

line voltage, load and temperature. Voltage regulator can be classified into linear

regulators and switching-mode regulators. Some drawbacks of linear regulators are

poor efficiency, which also leads to excess heat dissipation and it is impossible to

generate voltages higher than the supply voltage. Switching mode regulators can be

separated into the following categories: Pulse-Width Modulated (PWM) dc-dc

regulators, resonant dc-dc converters, and Switched-capacitor voltage regulators. The

PWM dc-dc regulators can be divided into three important topologies: buck converter,

boost converter, and buck-boost converter. The buck-boost converter is chosen for

analysis in this project.

A buck-boost converter is a component found in solar panels which is used to

regulate the voltage output produced by these solar panels. This converter can be

adjusted to produce voltage with a larger or smaller value than the initial voltage and

the polarity of voltage output will be the opposite of the voltage input’s polarity. This

experiment aims to create a voltage output at a constant value with a range of voltage

input. The voltage value produced by the converter is controlled by the pulse width

produced by the PWM (Pulse Width Modulation) generator. The PWM dc-dc buck-

boost converter reduces and increases dc voltage from one level to another.

1.2. Objectives

The objectives of this project are as follows:

1. Modeling and simulation the dc-dc buck-boost converter for open-loop.

2. Design a control circuit for the buck-boost converter.

3. Modeling and simulation the dc-dc buck-boost converter for closed-loop.

6

 Literature view CHAPTER 2

 Currently, there are plenty of technological applications that utilize natural, environmental-

friendly sources of energy. However, a disadvantage often found in natural energy sources is that the

intensity produced is uncertain. This occurrence is also found in solar panels, wherein the light

intensity that enters is not always equal. Light intensity may be affected by various factors such as

ones on gloomy or sunny weathers. This irregularity on light intensity leads to deviation of voltage

output produced by the solar panel. Thus, with the use of buck-boost converters, the amount of output

voltage may be set to higher or lower than the input voltage, enabling us to maintain the desired

output voltage.

In order to design the control system, it is necessary to have an exact model of buck-boost converter.

Several academic studies investigating Dc converters have been carried out from the early twentieth

century. Dinniyah et al. designed a buck-boost converter for solar panels [1]. Xuelian and Qiang [2]

also put forward the transfer function model of buck-boost converter by the state-space average

method. The open loop transfer function model of uncompensated system was deduced according to

the mathematic model of the buck boost converter. Also, the controller was designed according to

frequency domain. In this paper, the authors concluded that this control system has the advantages of

small overshoot and short settling time. It can also improve control system's real time property and

anti-interference ability.

To obtain high performance control of a dc-dc converter, a good model of the converter is needed.

System modeling is probably the most important phase in any form of system control design work.

Analytic models were derived which will be utilized latter for control. In 2005, Johansson and Bengt

[3] derived a transfer function for the buck, boost, and buck-boost converters operated in continuous

conduction mode. A similar work was conducted by Priyadarshini et al. [4] to present open loop

behavior of buck boost dc-dc converter operated under Continuous conduction mode (CCM). Then a

PID controller was designed such that any input variations produce a constant output voltage. In the

same vein, Yang and Shun in 2011 [5] introduced a module along with the controller action for the

buck converter. In this paper modeling, modeling and control of a simple DC-DC Ericsson BMR 450

series buck converter is presented. For the given converter, analyzing the disturbance properties of a

second order buck converter controller by a polynomial controller. The project is performed in

7

MATLAB and Simulink. The controller properties are evaluated for measurement noise and for

parameter changes.

The simulation of the mathematical model is usually implemented to verify the behavior of the

derived model. MATLAB Simulink software package can be advantageously used to simulate power

converters. In their paper, Ali Khajezadeh et al [6] attempt to simulate all basic non-isolated power

converters. The design of power electronic converter circuit with the use of closed loop scheme can

easily be done with the help of state equations and MATLAB Simulink. Similarly, Priyadarshini’s

approach [4] was achieved with the aid of MATLAB Simulink. Likewise, Badr and Munaf in 2014

[7] utilized MATLAB Simulink environment to validate the response of the controlled model. The

obtained results of the simulation show that the accuracy and the precision of the employed model to

meet the desired voltage of the solenoid coil.

The best way to maximize the production of solar energy systems is implementing an efficient

control system as well as the effectiveness of the method of the control in finding maximum power

point. The voltage value produced by the converter is usually controlled by the pulse width produced

by the PWM (Pulse Width Modulation) generator. The pulse width produced by the PWM generator

is controlled by a microcontroller. The microcontroller is programmed to control the pulse width and

frequency produced. PID controller has been widely applied in DC converters. Dinniyah et al.

designed a digital PID controller scheme that was implemented in Arduino microcontroller and

simulated in Proteus in order to keep a constant output voltage [1]. In the same field, Abdessamad

and others presented a Comparative study of analog and digital Controller on Buck-Boost converter

[8]. This paper reveals comparative performance between Analog and digital controller on DC/DC

buck-boost converter. The design of power electronic converter circuit with the use of closed loop

scheme needs modeling and then simulating the converter using the modeled equations. Another

important aspect of the subject is to find the maximum power point. In his paper, Mahapatro [9] in

2013, presented the utilization of a buck-boost converter for control of photovoltaic power using

Maximum Power Point Tracking (MPPT) control mechanism. The main aim of the project was to

obtain the maximum possible amount of energy.

8

 methodology CHAPTER 3

3.1. Principle of Buck-Boost converter

In order to design the control system, it is necessary to have an exact model of buck-boost converter.

The open loop transfer function model of uncompensated system is deduced according to the

mathematic model of the buck-boost converter.

The circuit of Buck-Boost converter operation can be divided into two distinctive modes[10] :

 discontinuous conduction mode (DCM).

 continuous conduction mode (CCM).

In our system we focused on (CCM). The CCM is divided into two modes during one period of

switching:

 Mode1

 Mode2

The output voltage is determined by Eq.2. According to Eq.2, it allows the output voltage to be lower

or higher than the input voltage, which is determined by the duty cycle. When D isless than 0.5,

output voltages will less than input voltage. Otherwise, output voltages will higher than input voltage

 (2)

Where D is duty cycle (switch on time in one period).

3.1.1 Mode 1

During mode1 1, the diode Vd is reversed biased and transistor Q is turn on. The input current flows

into inductor L and transistor Q. The inductor current will

raise and the Inductor L will store energy. At the same time, capacitance C supplies the load R. Its

equivalent circuit is shown as Fig.1. As shown in Fig.1, iL and vc are

9

the inductor current and the capacitor voltage respectively. Ron is on-resistance of transistor Q. rL is

on-resistance of the Inductor L.

we can derive, iL and vc by applying Kirchhoff’s Voltage Law (KVL) as following:

()

Because Ron and rL are very small, they can be ignored[10].

When written in state-space form, these equations become as Eq.5.

 ̇

 [

] ,

 ,

 y=Vo=Vc

Figure 3-1: Mode 1 when switch ON

10

3.1.2 Mode2

During mode 2, transistor Q turns off and the current, which was flowing through inductor L, will

flow through L, C, VD and the load R. At the same time, the

inductor current will fall until the transistor Q is switched off. Its equivalent circuit is shown as Fig.2

Applying KVL to the circuit, we get the following:

Now taking state-space model:

 ̇

 [

] ,

 ,

 y=Vo=Vc

Figure 3-2: Mode 2 when switch OFF

11

3.2. Building model of transfers function for Buck-Boost converter

from both modes (mode1 and mode 2) average matrices are taken as following:

 The averaged matrix A is as Eq.

 ()

 [

]

In a similar manner, the averaged matrices B and C are evaluated, with the following

results:

 ()

B

 ()

C = [0 1] (8)

Taking Laplace transform to find t.f of output to input:

 ()

Takin term to simplify:

 =[[

] [

]]

 [

]

=

[

]

 =[0 1]*

[

]

 =
[

]

12

[

]

 =

Simplifying:

→

 ()

 ()

3.3. Implement the design in Simulink

We have used MATLAB Simulink to implement the design and to see the the response in both open

loop and closed loop

In simulation we used values of components shown in table[11]:

component value

Inductor L 2200 uH

Capacitor C 8200 uF

Resistor R 5.1 Ω

Table ‎3-1 list of components

The model diagram is shown in fig.3 below as open loop design:

Figure ‎3-3 open loop diagram

13

3.4. Controller

What is a control system? Why do we need it?

● Open Loop and Closed loop Systems

● Examples of Control Systems

● What is a setpoint?

● What is Process Variable

● Control Output

Figure ‎3-4 Block Diagram of a Process under Control System

3.4.1 PID controller

A proportional–integral–derivative controller (PID controller) is a control loop feedback mechanism.

As the name suggests, PID algorithm consists of three basic coefficients: proportional, integral and

derivative which are varied to get optimal response.

PID as the Control System:

14

Figure ‎3-5PID as the Control System:

How does PID work?

The entire idea of this algorithm revolves around manipulating the error. The error

as is evident is the difference between the Process Variable and the Setpoint.

ERROR = PV - SP

These 3 modes are used in different combinations:

● P – Sometimes used

● PI - Most often used

● PID – Sometimes used

● PD – Very rare, useful for controlling servomotors.

15

The P-Control

Figure ‎3-6 The P-Control

In Proportional Only mode, the controller simply multiplies the Error by the Proportional Gain (Kp)

to get the controller output. The Proportional Gain is the setting that we tune to get our desired

performance from a “P only” controller.

The proportionality constant used for P-Control is KP.

Drawbacks of P-Control

● Too high a value of Kp will lead to the oscillation of PV.

● Also, the P-controller tends to generate an offset value.

● Proportional controllers also increase the maximum overshoot of the system

16

The PI-control

Controller Output(COI) = KI ∫e dτ

CO = COP + COI

=KPe + (∫e dτ)/τ1

=KP (e + (∫e dτ)/τN)

As e(t) grows or shrinks, the amount added to CO grows or shrinks immediately and proportionately.

The past history and current trajectory of the controller error have no influence on the proportional

term computation. Integral Action Eliminates Offset.

PID Control - Best of Everything

The proportional corrects instances of error, the integral corrects accumulation of error, and the

derivative corrects present error versus error the last time it was checked. The effect of the derivative

is to counteract the overshoot caused by P and I. When the error is large, the P and the I will push the

controller output. This controller response makes error change quickly, which in turn causes the

derivative to more aggressively counteract the P and the I.

Figure ‎3-7 PID Control Block diagram

17

Tuning a PID Controller

Tuning a control loop is the adjustment of its control parameters (gain/proportional band, integral

gain/reset, derivative gain/rate) to optimum values for a target response.

● Bump Test and Modelling (Manual Control)

● Tuning

● Simulation

Too High KP will lead to oscillation in values and will tend to generate an offset KI will counteract

the offset. Higher Value of KI implies that the Setpoint will reach the PV too fast If this action is very

fast, the process variable is prone to be unsteady. KD keeps this under control.

Figure ‎3-8 Response to Unit step of a D controller

18

Figure ‎3-9 Response to Unit step of an I control

Figure ‎3-10 Response to Unit step of a P controller

3.5. Tuning PID parameters using system identification

The system required PID controller, there are many ways to tune parameters (Kp, Ki, Kd) because the

exist of digital switch (MOSFET), the system is nonlinear, so it is required to be linear, linearization

is done automatically in Simulink by get the i/o data from simulation data and identify new plant to

apply the parameters on which, this operation called system identification process.

The following steps show how tuning done;

1- Run the plant once to store data required (parameters are chosen default) and the input voltage

chosen near the desired operation point (vi = 10v) as shown in the following figure:

19

Figure ‎3-11 run simulation

2- Open PID block and then choose (Tune…) , a message shows that the plant can’t be linearized as

shown in fig.12 bellow:

Figure ‎3-12 plant can't be linearized

20

That problem is solved in the next step:

3- Choose plant > I/O data from (Simulate data) to get I/O data required for estimation of the

response (the response is assumed as a new linear system) , fig.12 below shows how to choose:

Figure ‎3-13 new plant identification

4- after the new plant has been ready to set the desired response by change of (offset uo , signal

Type: Step, amplitude A) and change in required response amplitude ,response time, transient

behavior as shown in fig.14 below :

21

Figure ‎3-14 desired response setup

5- after choosing the satisfied response, apply the parameters to the plant, there will be new values

of (Kp, Ki, Kd) , the optimum values we got are shown in table.2:

PID parameter value

Kp 6.67537838450162e-05

Ki 2.67015135380065

Kd 0.0001

Table ‎3-2 PID parameters

 Result and discussion CHAPTER 4

In experimental work using Simulink the response was captured for many input voltages in both open

loop and closed loop and easy to see the difference between open loop and closed loop response.

4.1. Open loop result

In open loop response, we have desired Vo and actual Vin and can calculate duty cycle by equation

(4.1):

 ………. (4.1)

22

Many values of Vin were applied and the required duty cycle was calculated and changed manually

as the following table.3:

Vout actual Vo D Vin

12 10.5 0.6 8

12 10.5 0.5455 10

12 10.7 0.5 12

12 10.8 0.4615 14

12 10.9 0.3529 22

12 11 0.3 28

12 10.95 0.2727 32

12 11.1 0.25 36

12 11.1 0.2308 40

12 11.1 0.2105 45

12 11.1 0.1935 50
Table ‎4-1 open loop components

Each response in above table is captured in graph, the following graph shows how the open loop

response and show the unsatisfied overshoot and steady state error:

Table 4.2 show the charts of open loop response

Fig(a),Vin=8,D=0.6

Fig(b),Vin=10,D=0.54

Fig(c),Vin=12,D=0.5

Fig(d),Vin=14,D=0.46

23

Fig(f),Vin=22,D=0.35

Fig(g),Vin=28,D=0.3

Fig(h),Vin=32,D=0.27

Fig(i),Vin=36,D=0.5

Fig(j),Vin=40,D=0.23

Fig(k),Vin=45,D=0.21

Table ‎4-2 open loop response

As seen in the open loop response, the response was not good enough to apply in physical device, so

that the controller was designed (to reduce the overshoot and eliminate steady state error)

4.2. Closed loop result

After the design of PID controller, many input voltages were applied in the experimental work, when

change the input value there is no need to change duty cycle manually because it is regulated

automatically by PID controller.

As shown in table 4.3, there is no steady state error but accepted ripple when Vi<=12v

24

Fig(a) Vi=8

Fig(b) Vi=10

Fig(c) Vi=12

Fig(d) Vi=14

Fig(e) Vi=22

Fig(f) Vi=28

Fig(g) Vi=32

Fig(h) Vi=36

Fig(i) Vi=40

Fig(j) Vi=45

Table ‎4-3 close loop response

25

 conclusion and future work CHAPTER 5

5.1. conclusion

as the graphs show, we conclude the importance of the control systems in different devices and

process, in open loop simulation there is error about 20% of the desired voltage and that value is not

accepted and my cause fault to the system, and the overshoot was about 50% when high voltage

applied (30-40), that over shoot may cause damage to the physical components of the system.

5.2. future work

many things are considered ass future work, like the practical circuit we didn’t finish it because a

problem in the design of gate driver of the MOSFET, because Vgs need to be applied between gate

and source, the source isn’t connected to the ground of the circuit, so it needed a virtual ground, can

be implemented by using two sync MOSFETs with ic IR2108 and it is not available in market.

One of future work consideration is implementation of (FUZZY PID CONTROLLER) as a program

executed in an (sycn. Buck converter v1.8 made in Iraq) fig (5.1) it is buck converter and can be

configured as buck-boost converter, int is embedded system based on STM32 microcontroller.

Figure 5-1

26

List of References

[1] F. S. Dinniyah, W. Wahab, and M. Alif, "Simulation of Buck-Boost Converter for Solar

Panels using PID Controller," Energy Procedia, vol. 115, pp. 102-113, 2017.

[2] X. Zhou and Q. He, "Modeling and Simulation of Buck-Boost Converter with Voltage

Feedback Control," in MATEC Web of Conferences, 2015, vol. 31: EDP Sciences.

[3] B. Johansson, "DC-DC converters-dynamic model design and experimental verification,"

2005.

[4] D. Priyadarshini and S. Rai, "Design, Modelling and Simulation of a PID Controller for

Buck Boostand Cuk Converter," International Journal of Science and Research (IJSR)

ISSN (Online), pp. 2319-7064.

[5] S. Yang, "Modelling and control of a Buck converter," ed, 2011.

[6] A. Khajezadeh, A. Ahmadipour, and M. S. Motlagh, "DC-DC CONVERTERS VIA

MATLAB/SIMULINK."

[7] M. F. Badr, "Modelling and Simulation of Closed Loop Controlled DC-DC Converter Fed

Solenoid Coil," 2014.

[8] B. Abdessamad, K. Salah-ddine, and C. E. Mohamed, "A Comparative study of Analog

and digital Controller On DC/DC Buck-Boost Converter Four Switch for Mobile Device

Applications," arXiv preprint arXiv:1306.5180, 2013.

[9] S. K. Mahapatro, "Maximum power point tracking (MPPT) Of solar cell using buck-boost

converter," International Journal of Engineering & Technology, vol. 2, pp. 1810-1821,

2013.

[10] N. A. Ahmed, Electric Power Systems Research. 73,4 (2013)

[11] International Conference – Alternative and Renewable Energy Quest, AREQ 2017, 1-3

February

2017, Spain "Simulation of Buck-Boost Converter for Solar Panels using PID"

Ministry of Higher Education

& Scientific Research

University of Ninevah

College of Electronic Engineering

Department of Systems &

Control Engineering

Turbine Speed Control Using Genetic Algorithm Based On

PID Controller

Submitted By

Tiba Saad Mahmood

Sadi Ismail Sadi

Ruba Jorge

Supervised By

Mr. Abdullah Ibrahim Abdullah

Mr. Mohammed Abduljalil

A project submitted as partial fulfillment for the requirements of the

degree of Bachelor of Science in Systems and Control Engineering

May - 2018

Turbine Speed Control Using Genetic Algorithm

Based On PID Controller

A Project Submitted As Partial Fulfillment For The

Requirements Of The Degree Of B.Sc. In Systems and Control

Engineering

May – 2018

Submitted By

Tiba Saad Mahmood

Sadi Ismail Sadi

Supervised By

Mr. Abdullah Ibrahim Abdulla

Mr. Mohammed Abduljalil

Acknowledgement

 Alhamdulillah. Firstly, I would express my highest appreciation to Allah

S.W.T the Almighty and Merciful for giving me strength and because of

His Will; I manage to complete my Final Year Project.

 With this opportunity, I would like to acknowledge and extend my

heartfelt gratitude to my supervisor, Mr. Abdullah and Mr. Mohammed

for your guidance, support and valuable advice throughout the progress of

this project. It would have been difficult to complete this project without

enthusiastic support, insight and advice given by them.

 My appreciation also goes to my family who has been so supportive all

these years. Thanks for their encouragement, love and emotional supports

that they had given to me.

 I have gained a lot of help and support from friends and staffs in the

Faculty of Electronic Engineering. Once again, I want to take this

opportunity to say thank you to them for their advice and idea that help

me completed my project.

 Thank you very much. Your sincere help will be remembered for life.

I

ABSTRACT

It is known that PID controller is employed in every facet of industrial

automation. The application of PID controller span from small industry to

high technology industry. For those who are in heavy industries such as

refineries and ship-buildings, working with PID controller is like a

routine work. Hence how do we optimize the PID controller? Do we still

tune the PID as what we use to for example using the classical technique

that have been taught to us like Ziegler-Nichols method? Or do we make

use of the power of computing world by tuning the PID in a stochastic

manner?

In this dissertation, it is proposed that the controller be tuned using the

Genetic Algorithm technique. Genetic Algorithms (GAs) are a stochastic

global search method that emulates the process of natural evolution.

Genetic Algorithms have been shown to be capable of locating high

performance areas in complex domains without experiencing the

difficulties associated with high dimensionality.

 Using genetic algorithms to perform the tuning of the controller will

result in the optimum controller being evaluated for the system every

time.

For this study, the model selected is of turbine speed control system. The

reason for this is that this model is often encountered in refineries in a

form of steam turbine that uses hydraulic governor to control the speed of

the turbine. The PID controller of the model will be designed using the

classical method and the results analyzed. The same model will be

redesigned using the GA method. The results of both designs will be

compared, analyzed and conclusion will be drawn out of the simulation

made.

II

Contents

III

Chapter Title Page

 List of Figure V

 List of Tables VI

 List of Symbols VI

1 Introduction 1

1.1 Objectives 1

1.2 Background 1

2 Genetic Algorithm

4

2.1 Introduction 4

2.2 Characteristics of Genetic

Algorithm

4

2.3 Reproduction 5

2.4 Crossover 7

2.5 Mutation 9

2.6 Genetic Algorithm Process 10

2.7 Elitism 11

2.8 Objective Function for a Genetic

Algorithm

12

3 PID Controller 13

3.1 Introduction 13

3.2 PID Controller 14

3.3 Continuous PID 14

4 Designing Of PID Controller Using

Ziegler-Nichols

16

4.1 Introduction 16

4.2 Designing PID Parameters 16

4.3 Analysis of the Classically Designed

Controller

24

5 Designing Of PID Controller Using

Genetic Algorithm

30

5.1 Introduction 30

5.2 Initializing the Population of the

Genetic Algorithm

31

5.3 Setting The GA Parameters 32

5.4 Performing The Genetic Algorithm 34

5.5 The Objective Function Of The

Genetic Algorithm

34

5.6 Results Of The Implemented Genetic

Algorithm PID Controller

37

6 Conclusions And Further Works 41

6.1 Conclusions 41

6.2 Further Works 42

 References 43

 Appendix/Matlab Script and Function 44

IV

LIST OF FIGURES

V

Figure Number Title page

Figure 1 Typical Turbine Speed Control. 1

Figure 2.1 Depiction of roulette wheel

selection.

6

Figure 2.2 Illustration of a Single Point

Crossover

7

Figure 2.3 Illustration of a Multi-Point

Crossover

8

Figure 2.4 Illustration of a Uniform Crossover

9

Figure 2.5 Illustration of Mutation Operation

10

Figure 2.6 Graphical Illustration the Genetic

Algorithm Outline

10

Figure 3.1 Schematic of The PID Controller –

Non-Interacting Form

13

Figure 3.2 Block Diagram Of Continuous PID

Controller

14

Figure 4.1 Illustration of sustained Oscillation

with Period Pcr

16

Figure 4.2 Block Diagram Of Controller And

Plant

17

Figure 4.3 Plot of root locus for G(s) 19

Figure 4.4 Bode and Nichols Plot of the open

loop G(s)

20

Figure 4.5 Illustrated the Close Loop Transfer

Function

22

Figure 4.6 Simplified System 22

Figure 4.7 Unit Step Response of The Designed

System

24

Figure 4.8 Improved System Response 27

Figure 4.9 Optimized System Response 28

Figure.5.1 Chromosome Definition 35

Figure 5.2 GA-PID Controller Design For the

turbine control system

36

Figure 5.3 PID Response With Population Size

Of 20

37

Figure 5.4 Illustration Of Genetic Algorithm

Converging Through Generations

38

Figure 5.5 PID Response With Population Size

Of 40

39

Figure 5.6 Illustration Of Genetic Algorithm

Converging Through Generations.

40

LIST OF Tables

Table Number Title Page

Table 1 Routh Array 18

Table 2 Recommended PID Value Setting 21

Table 3 Result Of Classical Z-N And Genetic

PID Controller

40

LIST OF SYMBOLS

GA - Genetic Algorithm

RWS-Roulette Wheel selection.

SUS-Stochastic Universal Sampling.

ZN- Ziegler-Nichols

Kcr -Critical gain.

Pcr -Critical period.

VI

Chapter 1

Introduction

1.1 Objectives

The objectives of this project are as follows:

i. To develop the PID controller to control the speed of turbine.

ii. To design the controller using Ziegler- Nichols’ and genetic algorithm

(GA).

iii. To analyze the performance of the proposed controllers.

1.1 Background

In refineries, in chemical plants and other industries the gas turbine is a

well known tool to drive compressors. These compressors are normally of

centrifugal type. They consume much power due to the fact that very

large volume flows are handled. The combination gas turbine-compressor

is highly reliable. Hence the turbine-compressor play significant role in

the operation of the plants.[1]

 Figure 1. Typical Turbine Speed Control.

In the figure 1 set up, the high pressure steam (HPS) is usually used to

drive the

turbine. The turbine which is coupled to the compressor will then drive

the compressor. The hydraulic governor which, acts as a control valve

will be used to throttle the amount of steam that is going to the turbine

section. The governor opening is being controlled by a PID which is in

the electronic governor control panel.[1]

It is a known fact that the PID controller is employed in every facet of

industrial automation. The application of PID controller span from small

industry to high technology industry. For those who are in heavy

industries such as refineries and ship buildings, working with PID

controller is like a routine work. Hence how do we optimize the PID

controller? Do we still tune the PID as what we use to for example using

the classical technique that have been taught to us like Ziegler-Nichols

method? Or do we make use of the power of computing world by tuning

the PID in a stochastic manner?

In this project, it is proposed that the controller be tuned using the

Genetic Algorithm technique. Using genetic algorithms to perform the

tuning of the controller will result in the optimum controller being

evaluated for the system every time.

For this study, the model selected is of turbine speed control system. The

reason for this is that this model is often encountered in refineries in a

form of steam turbine that uses hydraulic governor to control the speed of

the turbine as illustrated in figure 1. The complexities of the electronic

governor controller will not be taken into consideration in this

dissertation. The electronic governor controller is a big subject by itself

and it is beyond the scope of this study.

 Nevertheless this study will focus on the model that makes up the steam

turbine and the hydraulic governor to control the speed of the turbine. In

the context of refineries, you can consider the steam turbine as the heart

of the plant. This is due to the fact that in the refineries, there are lots of

high capacities compressors running on steam turbine. Hence this makes

the control and the tuning optimization of the steam turbine

significant.[2]

In this project, it will be shown that the GA tuned PID will result in a

better optimization of the process. Here is a brief description of how GA

works. A GA is typically initialized with a random population consisting

of between 20-100 individuals. This population or mating pool is usually

represented by a real-valued number or a binary string called a

chromosome. How well an individual performs a task is measured and

assessed by the objective function. The objective function assigns each

individual a corresponding number called its fitness. The fitness of each

chromosome is assessed and a survival of the fittest strategy is applied.

There are three main stages of a genetic algorithm, these are known as

reproduction, crossover and mutation. During the reproduction phase the

fitness value of each chromosome is assessed. This value is used in the

selection process to provide bias towards fitter individuals. Just like in

natural evolution, a fit chromosome has a higher probability of being

selected for reproduction. This continues until the selection criterion has

been met. The probability of an individual being selected is thus related

to its fitness, ensuring that fitter individuals are more likely to leave

offspring. Multiple copies of the same string may be selected for

reproduction and the fitter strings should begin to dominate. Once the

selection process is complete, the crossover algorithm is initiated. The

crossover operations swaps certain parts of the two selected strings in a

bid to capture the good parts of old chromosomes and create better new

ones. Genetic operators manipulate the characters of a chromosome

directly, using the assumption that certain individual’s gene codes, on

average, produce fitter individuals. The crossover probability indicates

how often crossover is performed . A probability of 0% means that the

offspring. will be exact replicas of their parents. and a probability of

100% means that each generation will be composed of entirely new

offspring . Using selection and crossover on their own will generate a

large amount of different strings. However there are two main problems

with this:[3]

1. Depending on the initial population chosen, there may not be enough

diversity in the initial strings to ensure the GA searches the entire

problem space.

2. The GA may converge on sub-optimum strings due to a bad choice of

initial population.

These problems may be overcome by the introduction of a mutation

operator into the GA. Mutation is the occasional random alteration of a

value of a string position. It is considered a background operator in the

genetic algorithm The probability of mutation is normally low because a

high mutation rate would destroy fit strings and degenerate the genetic

algorithm into a random search. Mutation probability values of around

0.1% or 0.01% are common, these values represent the probability that a

certain string will be selected for mutation for an example for a

probability of 0.1%; one string in one thousand will be selected for

mutation. Once a string is selected for mutation, a randomly chosen

element of the string is changed or mutated.

Chapter 2

Genetic Algorithm

2.1 Introduction

Genetic Algorithms (GA.s) are a stochastic global search method that

mimics the process of natural evolution. It is one of the methods used for

optimization. John Holland formally introduced this method in the United

States in the 1970 at the University of Michigan. The continuing

performance improvements of computational systems has made them

attractive for some types of optimization.

The genetic algorithm starts with no knowledge of the correct solution

and depends entirely on responses from its environment and evolution

operators such as reproduction, crossover and mutation to arrive at the

best solution. By starting

at several independent points and searching in parallel, the algorithm

avoids local

minima and converging to sub optimal solutions. [4]

2.2 Characteristics of Genetic Algorithm

Genetic Algorithms are search and optimization techniques inspired by

two biological principles namely the process of natural selection and the

mechanics of natural genetics. GAs manipulate not just one potential

solution to a problem but a collection of potential solutions. This is

known as population. The potential solution in the population is called

chromosomes. These chromosomes are the encoded representations of all

the parameters of the solution. Each chromosomes

is compared to other chromosomes in the population and awarded fitness

rating

that indicates how successful this chromosomes to the latter. To encode

better solutions, the GA will use genetic operators or evolution operators

such as crossover and mutation for the creation of new chromosomes

from the existing ones in the population .This is achieved by either

merging the existing ones in the population or by modifying an existing

chromosomes. The selection mechanism for parent chromosomes takes

the fitness of the parent into account. This will ensure that the better

solution will have a higher chance to procreate and donate their beneficial

characteristic to their offspring.

A genetic algorithm is typically initialized with a random population

consisting of

between 20-100 individuals. This population or also known as mating

pool is usually represented by a real-valued number or a binary string

called a chromosome. For illustrative purposes, the rest of this section

represents each chromosome as a binary string. How well an individual

performs a task is measured and assessed by the objective function. The

objective function assigns

each individual a corresponding number called its fitness. The fitness of

each chromosome is assessed and a survival of the fittest strategy is

applied. In this

project, the magnitude of the error will be used to assess the fitness of

each chromosome.

There are three main stages of a genetic algorithm, these are known as

reproduction, crossover and mutation. This will be explained in details in

the following section.[4]

2.3 Reproduction

During the reproduction phase the fitness value of each chromosome is

assessed. This value is used in the selection process to provide bias

towards fitter individuals. Just like in natural evolution, a fit chromosome

has a higher probability of being selected for reproduction. An example

of a common selection technique is the ‘Roulette Wheel’ selection

method, Figure 2.1. Each individual in the population is allocated a

section of a roulette wheel; the size of the section is proportional to the

fitness of the individual. A pointer is spun and the individual to whom it

points is selected. This continues until the selection criterion has been

met. The probability of an individual being selected is thus related to its

fitness, ensuring that fitter individuals are more likely to leave offspring.

Multiple copies of the same string may be selected for reproduction and

the fitter strings should begin to dominate. However, for the situation

illustrated in Figure 2.1, it is not implausible for the weakest string

(01001) to dominate the selection process.

 Figure 2.1 Depiction of roulette wheel selection.

There are a number of other selection methods available and it is up to the

user to select the appropriate one for each process. All selection methods

are based on the same principal i.e. giving fitter chromosomes a larger

probability of selection.[4]

Four common methods for selection are:

1. Roulette Wheel selection.(RWS)

2. Stochastic Universal sampling.(SUS)

3. Normalized geometric selection.

4. Tournament selection.

2.4 Crossover

Once the selection process is complete, the crossover algorithm is

initiated. The crossover operations swaps certain parts of the two selected

strings in a bid to capture the good parts of old chromosomes and create

better new ones. Genetic operators manipulate the characters of a

chromosome directly, using the assumption that certain individual’s gene

codes, on average, produce fitter individuals. The crossover probability

indicates how often crossover is performed. A probability of 0% means

that the ‘offspring’ will be exact replicas of their ‘parents’ and a

probability of 100% means that each generation will be composed of

entirely new offspring. The simplest crossover technique is the Single

Point Crossover. There are two stages involved in single point

crossover:[4]

1. Members of the newly reproduced strings in the mating pool are

‘mated’ (paired) at random.

2. Each pair of strings undergoes a crossover as follows: An integer k is

randomly selected between one and the length of the string less one, [1,L-

1]. Swapping all the characters between positions k+1 and L inclusively

creates two new strings.

Example: If the strings 10000 and 01110 are selected for crossover and

the value of k is randomly set to 3 then the newly created strings will be

10010 and 01100 as shown in Figure 2.2.

Figure 2.2 Illustration of a Single Point Crossover

More complex crossover techniques exist in the form of Multi-point and

Uniform Crossover Algorithms. Multi-point crossover is an extension of

the single point crossover algorithm and operates on the principle that the

parts of a chromosome that contribute most to its fitness might not be

adjacent. There are three main stages involved in a Multi-point crossover.

1.Members of the newly reproduced strings in the mating pool are

‘mated’ (paired) at random.

2.Multiple positions are selected randomly with no duplicates and sorted

into ascending order.

3.The bits between successive crossover points are exchanged to produce

new offspring.

Example: If the string 11111 and 00000 were selected for crossover and

the multipoint crossover positions were selected to be 2 and 4 then the

newly created strings will be 11001 and 00110 as shown in Figure 2.3.

Figure 2.3 Illustration of a Multi-Point Crossover

In uniform crossover, a random mask of ones and zeros of the same

length as the parent strings is used in a procedure as follows.

1. Members of the newly reproduced strings in the mating pool are

‘mated’ (paired) at random.

2. A mask is placed over each string. If the mask bit is a one, the

underlying bit is kept. If the mask bit is a zero then the corresponding bit

from the other string is placed in this position.[4]

Example: If the string 10101 and 01010 were selected for crossover with

the mask 10101 then newly created strings would be 11111 and 00000 as

shown in Fig. 2.4.

Figure 2.4 Illustration of a Uniform Crossover

Uniform crossover is the most disruptive of the crossover algorithms and

has the capability to completely dismantle a fit string, rendering it useless

in the next generation. Because of this Uniform Crossover will not be

used in this project.[4]

2.5 Mutation

Using selection and crossover on their own will generate a large amount

of different strings. However there are two main problems with this:

1. Depending on the initial population chosen, there may not be enough

diversity in the initial strings to ensure the GA searches the entire

problem space.

2.The GA may converge on sub-optimum strings due to a bad choice of

initial population.

These problems may be overcome by the introduction of a mutation

operator into the GA. Mutation is the occasional random alteration of a

value of a string position. It is considered a background operator in the

genetic algorithm The probability of mutation is normally low because a

high mutation rate would destroy fit strings and degenerate the genetic

algorithm into a random search. Mutation probability values of around

0.1% or 0.01% are common, these values represent the probability that a

certain string will be selected for mutation i.e. for a probability of 0.1%;

one string in one thousand will be selected for mutation. Once a string is

selected for mutation, a randomly chosen element of the string is changed

or ‘mutated’. For example, if the GA chooses bit position 4 for mutation

in the binary string 10000, the resulting string is 10010 as the fourth bit in

the string is flipped as shown in Figure 2.5.[4]

Figure 2.5 Illustration of Mutation Operation

2.6 Genetic Algorithm Process

In this section the process of Genetic Algorithm will be summarized in a

flowchart. The summary of the process will be described below.

Figure 2.6 Graphical Illustration the Genetic Algorithm Outline

Create Population

Measure Fitness

Non optimum solution

Select Fittest

Mutation

Crossover/reproduction

Optimum Solution

The steps involved in creating and implementing a genetic algorithm are

as follows:

1. Generate an initial, random population of individuals for a fixed size.

2. Evaluate their fitness.

3. Select the fittest members of the population.

4. Reproduce using a probabilistic method (e.g., roulette wheel).

5. Implement crossover operation on the reproduced chromosomes

(choosing probabilistically both the crossover site and the ‘mates’).

6. Execute mutation operation with low probability.

7. Repeat step 2 until a predefined convergence criterion is met.

The convergence criterion of a genetic algorithm is a user-specified

condition e.g. the maximum number of generations or when the string

fitness value exceeds certain threshold.

2.7 Elitism

With crossover and mutation taking place, there is a high risk that the

optimum solution could be lost as there is no guarantee that these

operators will preserve the fittest string. To counteract this, elitist models

are often used. In an elitist model, the best individual from a population is

saved before any of these operations take place. After the new population

is formed and evaluated, it is examined to see if this best structure has

been preserved. If not, the saved copy is reinserted back into the

population. The GA then continues on as normal [4]

2.8 Objective Function for a Genetic Algorithm

Writing an objective function is the most difficult part of creating a

genetic algorithm. In this project, the objective function is required to

evaluate the best PID controller for the turbine system. An objective

function could be created to find a PID controller that gives the smallest

overshoot, fastest rise time or quickest settling time but in order to

combine all of these objectives it was decided to design an objective

function that will minimize the error of the controlled system. Each

chromosome in the population is passed into the objective function one at

a time. The chromosome is then evaluated and assigned a number to

represent its fitness, the bigger its number the better its fitness. The

genetic algorithm uses the chromosome’s fitness value to create a new

population consisting of the fittest members.[5]

Each chromosome consists of three separate strings constituting a P, I and

D term, as defined by the 3-row ‘bounds’ declaration when creating the

population. When the chromosome enters the evaluation function, it is

split up into its three terms, and the P, I and D gains are used to create a

PID controller according to Equation

GPID =
Kds2 + Kp s + Ki

s
 − − − − − 1

The newly formed PID controller is placed in a unity feedback loop with

the turbine transfer function. In order to reduce the compile time of the

program the turbine transfer function is defined in another file and

imported as a global variable. The controlled system is given a step input

and the error is assessed using an appropriate error performance criterion

MSE. The chromosome is assigned an overall fitness value according to

the magnitude of the error, the smaller the error the larger the fitness

value.

Chapter 3

PID Controller

3.1 Introduction:

PID controller consists of Proportional Action, Integral Action and

Derivative Action. It is commonly refer to Ziegler-Nichols PID tuning

parameters. It is by far the most common control algorithm [1]. In this

chapter, the basic concept of the PID controls will be explained.

PID controllers algorithm are mostly in feedback loops. PID controllers

can be implemented in many forms. It can implemented as a stand-alone

controller or as part of Direct Digital Control (DDC) package or even

Distributed Control System (DCS). The latter is a hierarchical distributed

process control system which is widely used in process plants such as

pharmaceutical or oil refining industries. It is interesting to note that more

than half of the industrial controllers in use today utilize PID or modified

PID control schemes. Below is a simple diagram illustrating the

schematic of the PID controller. Such set up is known as non- interacting

form or parallel form.[1]

 Input

output

 -

 Figure 3.1 Schematic of The PID Controller –Non-Interacting

Form

I

D

P

 ∑
Plant

3.2 PID Controller

In proportional control,

𝑃𝑡𝑒𝑟𝑚 = 𝐾𝑃 𝑋 𝐸𝑟𝑟𝑜𝑟 − − − 2

It uses proportion of the system error to control the system. In this action

an offset is introduced in the system. In Integral form,

Iterm = KI ∗ ∫ Error dt − − − 3

It is proportional to the amount of error in the system. In this action, the I-

action will introduce a lag in the system. This will eliminate the offset

that was introduced on by the P-action. In Derivative control,

Dterm = KD ∗
d(error)

dt
 − − − 4

It is proportional to the rate of change of the error. In this action, the D-

action will introduce a lead in the system. This will eliminate the lag in

the system that was introduced by the I-action earlier on.[2]

3.3 Continuous PID

The three controllers when combined together can be represented by the

following transfer function.

GC(s) = Kp (1 +
1

Ti s
+ Tds) − − − 5

This can be illustrated in the following block diagram

 -

 Figure 3.2 Block Diagram Of Continuous PID Controller.

What the PID controller does is basically is to act on the variable to be

manipulated through a proper combination of the three actions that is the

P control action, I control action and D control action.The P action

 Kp(1 + 1

Ti s
+ Tds)

1

s(s + 1)(s + 5)

C(s) R(s)

is the control action that is proportional to the actuating error signal,

which is the difference between the input and the feedback signal. The I

action is the control action which is proportional to the integral actuating

error signal. Finally the D action is the control action which is

proportional to the derivative of the actuating error signal.

With the integration of all the three actions, the continuous PID can be

realized. This type of controller is widely used in industries all over the

world. In fact a lot of research, studies and application has been

discovered in the recent years.[2]

Chapter 4

Designing Of PID Controller Using Ziegler-

Nichols

4.1 Introduction

For the system under study, Ziegler-Nichols tuning rule based on critical

gain Kcr and critical period Pcr will be used. In this method, the integral

time Ti will be set to infinity and the derivative time Td to zero. This is

used to get the initial PID setting of the system.

In this method, only the proportional control action will be used. The Kp

will be increase to a critical value Kcr at which the system output will

exhibit sustained oscillations. In this method, if the system output does

not exhibit the sustained oscillations hence this method does not apply.

In this chapter, it will be shown that the inefficiency of designing PID

controller using the classical method. [7].

4.2 Designing PID Parameters

From the response below, the system under study is indeed oscillatory

and hence the Ziegler-Nichols tuning rule based on critical gain Kcr and

critical period Pcr can be applied. [7]

Figure 4.1 Illustration of sustained Oscillation with Period Pcr.

The transfer function of the PID controller is

GC(s) = KP(1 +
1

TiS
+ TdS)

The objective is to achieve a unit-step response curve of the designed

system that exhibits a maximum overshoot of 30 %. If the maximum

overshoot is excessive says about greater than 40%, fine tuning should be

done to reduce it to less than 30%.

The system under study above has a following block diagram

 R(s) + C(s)

 -

 Figure 4.2 Block Diagram Of Controller And Plant

Since Ti=∞ and Td=0, this can be reduced to the transfer function of

C(s)

R(s)
=

Kp

S(S + 1)(S + 5) + Kp

The value of Kp that makes the system marginally stable so that sustained

oscillation occurs can be obtained by using the Routh's stability criterion.

Since the characteristic equation for the closed-loop system is

S3 + 6S2 + 5S + Kp = 0

From the Routh's Stability Criterion, the value of Kp that makes the

system marginally stable can determined. [7]

Table 1 illustrates the Routh array.

(s)cG 1

𝑆(𝑆 + 1)(𝑆 + 5)

 Table 1. Routh Array

S3 1 5

S2 6 Kp

S1 (30-Kp)/6 0

S0 Kp 0

By observing the coefficient of the first column, the sustained oscillation

will occur if Kp=30.

Hence the critical gain Kcr is

Kcr=30

Thus with Kp set equal to Kcr, the characteristic equation becomes

 S3+6S2+5S+30=0

The frequency of the sustained oscillation can be determined by

substituting the S terms with jw term. Hence the new equation becomes

 (jw)3 + 6(jw)2 + 5(jw) + 30 = 0

This can be simplified to

6(5 − w2) + jw(5 − w2) = 0

From the above simplification, the sustained oscillation can be reduced to

 w2 = 5

 or

 w = √5= 2.23603 rad/sec

A second method we can use the root-locus to tuned the Ziegler-Nichols

to evaluate the PID gains for the system. Using the ‘rlocfind’ command in

Matlab, the crossover point and gain of the system were found to be -

0.0000 + 2.23603i and 30 respectively as shown in Figure 4.3.

% root-locus to calculate crossover point (w)and gain (Kcr) using

MATLAB

clear

clc

n=[1];

d=[1 6 5 0];

rlocus(n,d)

rlocfind(n,d)

Figure 4.3 Plot of root locus for G(s).

A third method we can use the bode plot or Nichols to tuned the Ziegler-

Nichols PID controller by using the ‘bode’ command in Matlab to

evaluate the gain margin as shown in figure 4.4.

% Bode plot to calculate gain (Kcr) and (w) from gain margin using

MATLAB

clear

clc

n=[1];

-20 -15 -10 -5 0 5 10
-15

-10

-5

0

5

10

15

0.94

0.985

0.160.340.50.640.76

0.86

0.94

0.985

2.557.51012.51517.520

0.160.340.50.640.76

0.86

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is

d=[1 6 5 0];

G=tf (n , d);

sisotool(G)

 Figure 4.4 Bode and Nichols Plot of the open loop G(s).

From gain margin we can calculate Kcr as follows

20𝐿𝑜𝑔 𝐾𝑐𝑟 = 𝑔𝑎𝑖𝑛 𝑚𝑎𝑟𝑔𝑖𝑛

𝐾𝑐𝑟 = 1029.5 𝑑𝐵/20 = 29.8538

w=2.24 rad/sec

The period of the sustained oscillation can be calculated as

Pcr = 2π/√5

 = 2.8099 sec

-360 -315 -270 -225 -180 -135 -90 -45 0
-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

 6 dB
 3 dB

 1 dB
 0.5 dB

 0.25 dB
 0 dB

 -1 dB

 -3 dB

 -6 dB

 -12 dB

 -20 dB

 -40 dB

 -60 dB

 -80 dB

 -100 dB

 -120 dB

 -140 dB

 -160 dB

G.M.: 29.5 dB @ 2.24 rad/sec

P.M.: 76.7 deg @ 0.196 rad/sec

Stable loop

Open-Loop Nichols Editor for Open Loop 1 (OL1)

Open-Loop Phase (deg)
10

-2
10

-1
10

0
10

1
10

2
-270

-225

-180

-135

-90

P.M.: 76.7 deg

Freq: 0.196 rad/sec

Frequency (rad/sec)

-120

-100

-80

-60

-40

-20

0

20

G.M.: 29.5 dB

Freq: 2.24 rad/sec

Stable loop

Open-Loop Bode Editor for Open Loop 1 (OL1)

From Ziegler-Nichols frequency method of the second method ,the able

suggested tuning rule according to the formula shown. From these we are

able to estimate the parameters of Kp, Ti and Td.[2]

Table 2. Recommended PID Value Setting

Type of Controller Kp Ti Td

P 0.5 Kcr ∞ 0

PI 0.45 Kcr (1/1.2) Pcr 0

PID 0.6 Kcr 0.5 Pcr 0.125 Pcr

Hence the from the table, the values of the PID parameters Kp, Ti and Td

will be

Kp=0.6*Kcr=0.6*30=18

Ti= 0.5 X 2.8099

 = 1.405 Ki= Kp / Ti=30/1.405=21.35231

Td= 0.125 X 2.8099

 = 0.351 Kd=Kp*Td=30*0.351=10.53

The transfer function of the PID controller with all the parameters is

given as

Gs(s) = Kp (1 +
1

TiS
+ Tds)

= 18(1 +
1

1.405 s
+ 0.35124s)

=
6.3223(s + 1.435)2

s

From the above transfer function, we can see that the PID controller has

pole at the origin and double zero at s= -1.4235.

The block diagram of the control system with PID controller is shown in

fig.4.5.

 R(s) C(s)

 Figure 4.5 Illustrated the Close Loop Transfer Function.

6.3223(𝑆 + 1.4235)2

𝑆

1

S(S + 1)(S + 5)

Using MATLAB function, the following system can be easily calculated.

The system in fig. 4.4 can be reduced to a single block by using the

following MATLAB function. Below is the MATLAB codes that will

calculate the two blocks in series.

% calculation of series system response using MATLAB

num1=[0 6.3223 17.999 12.8089];

den1= [0 0 1 0];

num2= [0 0 0 1];

den2= [1 6 5 0];

[num, den]=series (num1, den1, num2, den2);

Printsys (num, den)

This will the gives the following answer

num/den=

 6.3223 s^2 + 17.999 s + 12.8089

 s^4 + 6 s^3 + 5 s^2

Hence the above diagram is reduced to simplified system as shown in

fig.4.6

 R(s) C(s)

Figure 4.6 Simplified System

Using another MATLAB function, the overall function with its feedback

can be calculated as follow

% calculation of feedback system response using MATLAB

num1= [0 0 6.3223 17.999 12.8089];

den1= [1 6 5 0 0];

num2= [0 0 0 01];

den2= [0 0 0 01];

[num, den]=feedback (num1, den1, num2, den2);

Printsys (num, den)

This will result to

6.3223𝑆2 + 17.999𝑆 + 12.8089

𝑆4 + 6𝑆3 + 5𝑆2

∑

num/den=

 6.3223 s^2+17.999 s+12.8089

 s^4+6 s^3+ 11.3223 s^2+17.8089+12.8089

Therefore the overall close loop system response of

𝐶(𝑠)

𝑅(𝑠)
=

6.3223𝑆2 + 17.999𝑆 + 12.808

𝑆4 + 6𝑆3 + 11.3223𝑆2 + 18𝑆 + 12.8089

The unit step response of this system can be obtained with MATLAB and

shown in figure 4.7.

%MATLAB script of the Designed PID controller system

num=[0 0 6.3223 18 12.8];

den=[1 6 11.3223 18 12.811];

step (num, den);

grid;

title ('Unit Step Response of the designed system')

 Figure 4.7 Unit Step Response of The Designed System.

Unit Step Response of the designed system

Time (sec)

A
m

p
lit

u
d
e

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

System: sys

Peak amplitude: 1.62

Overshoot (%): 61.9

At time (sec): 1.68

System: sys

Settling Time (sec): 10

System: sys

Rise Time (sec): 0.578

4.3 Analysis of the Classically Designed Controller

From the above diagram, we can utilize the response of the system. The

zero and pole of the system can be calculated using the MATLAB

function "tf2zp". We can analyze them via the following parameters:

Delay time, td

Rise time, tr

Peak time, tp

Maximum Overshoot, Mp

Settling time, ts

The delay time, td of the above system is the time taken to reach 50% of

the final response time is about 0.5 sec.

The rise time, tr is the time taken to reach 5 to 95% of the final value is

about 0.578 sec.

The peak time, tp is the time taken for the system to reach the first peak

of overshoot is 1.68 sec.

The Maximum overshoot, Mp of the system is approximately 61.9 %.

Finally, the Settling time, ts us about 10 sec. from the analysis above, the

system has not been tuned to its optimum. Here we can improve the

system by looking into the system zero and pole.

The system zeros and poles can be calculated using MATLAB function

mentioned below.

% calculation of zero and pole of the system response using MATLAB

num=[0 0 6.3223 17.999 12.8089];

den=[1 6 11.3223 17.009 12.8089];

[z, p, k]= tf2zp (num, den)

Results:

z=

 -1.4387

 -1.4282

p=

 -4.0478

 -0.3532+1.5542i

 -0.3532- 1.5542i

 -1.2457

k=

6.3223

The above result shows that the system is stable since all the poles are

located on the left side of the s-plane.

To optimize the response further, the PID controller transfer function

must be revisited.

The transfer function of the designed PID controller is

Gc(s) = Kp (1 +
1

TiS
+ TdS)

 = 18(1 +
1

1.405 S
+ 0.35124 S)

 =
6.3223(S+1.4235)2

S

The PID controller has a double zero of -1.4235. By trial and error, let

keeps the Kp=18 and change the location of the double zero from

-1.4235 to -0.65.

The new PID controller will have the following parameters:

GC(s) = 18(1 +
1

8.077s2 + 0.7692s
)

= 13.846
(s + 0.65)2

s

 =
13.864s2 + 17.998s + 5.65

s4 + 6s3 + 5s2

The total response with a unity feedback can be calculated as follow

C(s)

R(s)
=

13.846s2 + 17.998s + 5.85

s4 + 6s3 + 16.846s2 + 17.998s + 5.85

The response of the above system can be illustrated in the fig.4.8.

Figure 4.8 Improved System Response

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

p
lit

u
d
e

The new system response has somehow improved. The Maximum

Overshoot, Mp had reduced to approximately 18%. The Settling Time, ts

has improved from 14 sec to 6 sec. the Peak Time, tp and Delay time, td

has increased. The final amplitude has improved at the expense of the

system time. The new PID parameters can be calculated as are Kp=18,

Ti=3.077 and Td=0.7692.

To improve the system further, lets increase the Kp value to 39.42. The

location of double zero will be kept the same i.e. s=0.65. The new

transfer function of the PID controller will be

G(s) = 39.42(1 +
1

3.077s
+ 0.769s)

= 30.322
(s + 0.65)2

s

Using the MATLAB command, the above function together with the

plant transfer function and the unity feedback can be determined.

 The result is Gc(s) =
27.729s2+36s+11.7

s4+6s3+32.729s2+36s+11.7

 The system response can be shown in fig.4.9

 Figure 4.9 Optimized System Response

The above response shows that the system has improved. The response is

faster than the one shown in figure 4.7. The Maximum Overshoot of 26.5

%. This is still acceptable since the Maximum Overshoot allowable is less

than 30 %. The settling time ts of 3.65 sec. The rise time tr of 0.286 sec.

The new PID controller can be calculated as Kp=39.42, Ti=3.077 and

Td=0.7692.

In the various plots above, the various responses and its design

parameters can be observed. Hence we can clearly see that the final

parameters are more superior than the earlier two responses. However the

setback is the Mp, which is more than the Mp of the second response.

Nevertheless the final response Mp is still within the 30 % Maximum

Overshoot allowable. The settling time, ts of the second and the third

response fared much better that the first response. The ts reached its

steady-state in much faster than the original time taken by the original

response.

It is interesting to observe that these values are approximately twice the

values suggested by the second method of Ziegler-Nichols tuning rule.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

p
lit

u
d
e

Hence we can conclude that Ziegler-Nichols tuning has provided us a

starting point for a fine tuning.

It is observed that for the case where the double zero is located at s=-

1.425, increasing the value of Kp increases the speed of the response.

However this does not improve the percentage maximum overshoot. In

fact varying Kp has little impact on the percentage maximum overshoot.

On the other hand, varying the double zero has significant effect on the

maximum overshoot. The zero is shifted from -1.425 to -0.65 and we

observed that the maximum overshoot reduces. Finally to achieve a better

result, we have to have to double the Kp value coupled with the new zero

value and hence the better percentage maximum overshoot can be

achieved. The above can explained through the root-locus analysis.

Chapter 5

Designing Of PID Controller Using Genetic

Algorithm

5.1 Introduction

Before we go into the above subject. It is good to discuss the differences

between Genetics Algorithm against the traditional methods. This will

help us understand

why GA is more efficient than the latter. Genetic algorithms are

substantially different to the more traditional search and optimization

techniques. The five main differences are:

1. Genetic algorithms search a population of points in parallel, not from a

single point.

2.Genetic algorithms do not require derivative information or other

auxiliary knowledge; only the objective function and corresponding

fitness levels influence the direction of the search.

3. Genetic algorithms use probabilistic transition rules, not deterministic

rules.

4. Genetic algorithms work on an encoding of a parameter set not the

parameter set itself (except where real-valued individuals are used).

5.Genetic algorithms may provide a number of potential solutions to a

given problem and the choice of the final is left up to the user.

5.2 Initializing the Population of the Genetic Algorithm

The Genetic Algorithm has to be initialized before the algorithm can

proceed. The Initialization of the population size, variable bounds and the

evaluation function are required. These are the initial input that are

required in order for the Genetic Algorithm process to start.

The following code is based on the Genetic Algorithm Optimization

Toolbox

(GAOT) .

%Initialising the genetic algorithm

populationSize=20;

variableBounds=[-100 100;-100 100;-100 100];

evalFN=’PID_objfun_MSE’;

%Change this to relevant object function

evalOps=[];

options=[1e-6 1];

initPop=initializega(populationSize,variableBounds,evalFN.

evalOps,options)

The following codes are used to initialize the GA. The codes will be

explained in

details.

Population Size - The first stage of writing a Genetic Algorithm is to

create a population. This command defines the population size.

Variable Bounds - Since this project is using genetic algorithms to

optimize the gains of a PID controller there are going to be three strings

assigned to each member of the population, these members will be

comprised of a P, I and a D string that will be evaluated throughout the

course of the GA. The three terms are entered into the genetic algorithm

via the declaration of a three row variable bounds matrix. The number of

rows in the variable bounds matrix represents the number of terms in

each member of the population.

EvalFN - The evaluation function is the declaration of the file name

containing the objective function.

Options - Although the previous examples in this section were all

binary encoded, this was just for illustrative purposes. Binary strings have

two main drawbacks:

1. They take longer to evaluate due to the fact they have to be converted

to/from binary.

2. Binary strings lose precision during conversion.

As a result of this and the fact that they use less memory, real (floating

point) numbers will be used to encode the population. This is signified in

the options command in section 5.2, where the ‘1e-6’ term is the floating

point precision and the ‘1’ term indicates that real numbers are being used

(0 indicates binary encoding is being used).

Initialisega - This command combines all the previously described

terms and creates an initial population of 20 real valued members

between –100 and 100 with 6 decimal place precision.

5.3 Setting The GA Parameters

The following are codes for setting up the GA. The details of the code

used will

be explained below.

%Setting the parameters for the genetic algorithm
bounds=[-100 100;-100 100; -100 100];

evalFN=’PID_objfun_MSE’;%change this to relevant object function

evalOps=[];

startPop=initPop;

opts=[1e-6 1 0];

termFN=’maxGenTerm’;

termOps=100;

selectFN=’normGeomSelect’;

selectOps=0.08;

xOverFNs=’arithXover’;

xOverOps=4;

mutFNs=’unifMutation’;

mutOps=[8 100 2];

 Bounds - The variable bound are for the genetic algorithm to search

within a specified area. These bounds may be different from the ones

used to initialize the population and they define the entire search space

for the genetic algorithm.

 startPop - The starting population of the GA, ‘startPop’, is defined as

the population described in the previous section, i.e. ‘initPop’, see 5.2.

 opts - The options for the Genetic Algorithm consist of the precision

of the string values i.e. 1e-6, the declaration of real coded values, 1,

and a request for the progress of the GA to be displayed, 1, or

suppressed, 0.

 TermFN - This is the declaration of the termination function for the

genetic algorithm. This is used to terminate the genetic algorithm once

certain criterion has been met. In this project, every GA will be

terminated when it reaches a certain number of generations using the

‘maxGenTerm’ function. This termination method allows for more

control over the compile time that is the amount of time it takes for the

genetic algorithm to reach its termination criterion of the genetic

algorithm when compared with other termination criteria e.g.

convergence termination criterion.

 TermOps - This command defines the options, if any, for the

termination

function. In this example the termination options are set to 100, which

means

that the GA will reproduce one hundred generations before terminating.

This

number may be altered to best suit the convergence criteria of the genetic

algorithm i.e. if the GA converges quickly then the termination options

should

be reduced.

 SelectFN - Normalised geometric selection (‘normGeomSelect’) is

the primary

selection process to be used in this project. The GAOT toolbox provides

two

other selection functions, Tournament selection and Roulette wheel

selection.

Tournament selection has a longer compilation time than the rest and as

the

overall run time of the genetic algorithm is an issue, tournament selection

will

not be used. The roulette wheel option is inappropriate due to the reasons

mentioned in section 2.3.

 SelectOps - When using the ‘normGeomSelect’ option, the only

parameter that

has to be declared is the probability of selecting the fittest chromosome of

each generation, in this example this probability is set to 0.08.

 XOverFN - Arithmetic crossover was chosen as the crossover

procedure. Single point crossover is too simplistic to work effectively

on a chromosome

with three allies, a more uniform crossover procedure throughout the

chromosome is required. Heuristic crossover was discarded because it

performs the crossover procedure a number of times and then picks the

best one. This increases the compilation time of the program and is

undesirable. The Arithmetic crossover procedure is specifically

used for floating point numbers and is the ideal crossover option for use

in this project.

 XOverOptions -This is where the number of crossover points is

specified. In the example shown in section 5.3, the number of

crossovers points is set to four.

 mutFNs - The ‘multiNonUnifMutation’, or multi non-uniformly

distributed

mutation operator, was chosen as the mutation operator as it is considered

to

function well with multiple variables.

 MutOps - The mutation operator takes in three options when using

the ‘multiNonUnifMutation’ function. The first is the total number of

mutations,

normally set with a probability of around 0.1%. The second parameter is

the maximum number of generations and the third parameter is the shape

of the distribution. This last parameter is set to a value of two, three or

four where the number reflects the variance of the distribution.

5.4 Performing The Genetic Algorithm

The genetic algorithm is compiled using the command shown below . The

function ‘ga.m’ will evaluate and iterate the genetic algorithm until it

fulfills the criteria described by it termination function.

%Performing the genetic algorithm

[x,endPop,bPop,traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,...

termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutO

ps);

Once the genetic algorithm is completed, the above function will return

four variables:

x = The best population found during the GA.

endPop = The GA.s final population.

bestPop = The GA.s best solution tracked over generations.

traceInfo = The best value and average value for each generation.

5.5 The Objective Function Of The Genetic Algorithm

This is the most challenging part of creating a genetic algorithm is writing

the objective function.. In this project, the objective function is required

to evaluate the best PID controller for the system. An objective function

could be created to find a PID controller that gives the smallest

overshoot, fastest rise time or quickest settling time. However in order to

combine all of these objectives it was decided to design an objective

function that will minimize the error of the controlled system instead.

Each chromosome in the population is passed into the objective function

one at a time. The chromosome is then evaluated and assigned a number

to represent its fitness, the bigger its number the better its fitness. The

genetic algorithm uses the chromosome’s fitness value to create a new

population consisting of the fittest members. Below are the codes for the

Objective Function.

function [x_pop, fx_val]=PID_objfun_MSE(x_pop,options)

global sys_controlled

global time

global sysrl

% Splitting the chromosones into 3 separate strings.

Kp=x_pop(2);

Ki=x_pop(3);

Kd=x_pop(1);

% creating the PID controller from current values

pid_den=[1 0];

pid_num=[Kd Kp Ki];

pid_sys=tf(pid_num,pid_den); % overall PID controller

Each chromosome consists of three separate strings constituting a P, I and

D term, as defined by the 3-row shown in figure 5.1 . When the

chromosome enters the evaluation function, it is split up into its three

Terms. The P, I and D gains are used to create a PID controller according

to the equation below.

GPID =
Kds2 + Kps + Ki

s

Fig.5.1 . Chromosome Definition

The newly formed PID controller is placed in a unity feedback loop with

the system transfer function shown in figure 5.2. This will result in a

reduce of the compilation time of the program. The system transfer

function is defined in another file and imported as a global variable. The

controlled system is then given a step input and the error is assessed using

an error performance criterion such as Mean Square Error or in short

MSE. The MSE is an accepted measure of control and of quality but its

practical use as a measure of quality is somehow limited [6]. The

chromosome is assigned an overall fitness value according to the

magnitude of the error, the smaller the error the larger the fitness value.

Below is the codes and the formula used to implement the MSE Objective

Function.

 Mean Square Error (MSE)

 𝐈𝐌𝐒𝐄 =
𝟏

𝐧
∑ (𝐞(𝐭))𝟐𝐧

𝐢=𝟏

%Calculating the MSE

for i=1: size(t)

error(i) = 1-y(i);

end

error_sq = error * error' ;

MSE=error_sq/max(size(error));

 Figure 5.2. GA-PID Controller Design For the turbine control

system.

Additional code was added to ensure that the genetic algorithm converges

to a controller that produces a stable system. The code, shown in Figure

below , assesses the poles of the controlled system and if they are found

to be unstable that is on the right half of the s-plane, the error is assigned

Kd Kp Ki

input
PID

Controller

]i,K p, Kd[K

Genetic

Algorithm (GA)

1

s(s + 1)(s + 5)

+ output

-

an extremely large value to make sure that the chromosome is not

reselected.
%Ensuring controlled system is stable

poles=pole(sys_controlled);

if poles(1)>0

MSE=10e5;

elseif poles(2)>0

MSE=10e5;

elseif poles(3)>0

MSE=10e5;

elseif poles(4)>0

MSE=10e5;

end

fx_val=MSE;

5.6 Results Of The Implemented Genetic Algorithm PID Controller

In the following section, the results of the implemented GA- PID

Controller will be analyzed. The GA- PID controller was initialized with

population size of 20&40. The response of the GA- PID will then be

analyzed for the smallest overshoot, fastest rise time and the fastest

settling time. The best response will then be selected. From the following

responses, the GA- PID will be compared to the Ziegler-Nichols method.

The superiority of GA against the Z-N method will be shown.

The plot of the GA designed PID with the population size of 20 is shown

in figure 5.3.

Figure 5.3 PID Response With Population Size Of 20.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [sec]

 A
m

p
lit

u
d
e

 Turbine step response of the GA-PID controller

population size 20

The details of the system response will be analyzed. The response of

system looks reasonable stable. The overshoot of the response is 1.98 %.

The settling time of the response is 0.837 seconds and finally the

response of the rise time is 0.56 seconds.

The closed loop poles are

P1=-2.630651198980039 + 2.984859824251561i

P2=-2.630651198980039 - 2.984859824251561i

P3=-0.721973109485876

P4=-0.016724492554048

The convergence curve for each gain is called as particle for Kp, Ki and

Kd is plotted to give an idea how the GA converged to its final value has

been illustrated in Figures 5.4 is the outcome of convergence curve for

output response.

Figure 5.4 Illustration Of Genetic Algorithm Converging Through

Generations.

0 2 4 6 8 10 12 14 16 18 20
10

15

20
Kd Value

G
a
in

0 2 4 6 8 10 12 14 16 18 20
-50

0

50
Kp Value

G
a
in

0 2 4 6 8 10 12 14 16 18 20
-1

0

1
Ki Value

Generations

G
a
in

Figure 5.5 depict the response of GA designed PID with the population

size of 40.

Figure 5.5 PID Response With Population Size Of 40.

The details of the system response will be analyzed. The overshoot of the

response is 1.85%The settling time of the response is 0.812 seconds and

finally the response of the rise time is 0.543seconds . The closed loop

poles are

P1=-2.662661360979914 + 3.121811944967547i

P2=-2.662661360979914 - 3.121811944967547i

P3=-0.617779255034797

P4=-0.056898023005371

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [sec]

 A
m

p
lit

u
d
e

 Turbine step response of the GA-PID controller

population size 40

The convergence curve for each gain is called as particle for Kp, Ki and

Kd is plotted to give an idea how the GA converged to its final value has

been illustrated in Figures 5.6 is the outcome of convergence curve for

output response.

 Figure 5.6 Illustration Of Genetic Algorithm Converging Through

Generations.

The analysis of both controllers are shown in table 3.

Table 3.Result Of Classical Z-N And Genetic PID Controller.

Type of

Controller

Kd Kp Ki Mp

%

Ts

(sec)

Tr

(sec)

Population

size Z-N. 10.53 18 21.35231 61.9 10 0.578

Opt.Z-N 30.3139 39.42 12.811 26.5 3.65 0.286

GA-PID 14.7283 11.7569 0.191138 1.98 0.837 0.56 20

15.4635 11.5457 0.591774 1.85 0.812 0.543 40

From table 3 the system response of the GA-PID controller with

population size of 40 have the best response as compared to the others

responses .Proceeding with the higher population size will take up a lot of

computer memory space.

0 5 10 15 20 25 30 35 40
10

20

30
Kd Value

G
a
in

0 5 10 15 20 25 30 35 40
-20

0

20
Kp Value

G
a
in

0 5 10 15 20 25 30 35 40
-2

0

2
Ki Value

Generations

G
a
in

Chapter 6

Conclusions And Further Works

6.1 Conclusions

In conclusion the responses as shown in chapter 5, had showed to us that

the designed PID with GA has much faster response than using the

classical method. The classical method is good for giving us as the

starting point of what are the PID values. However as shown in chapter 4,

the approached in deriving the initial PID values using classical method is

rather troublesome. There are many steps and also by trial and error in

getting the PID values before you can narrow down in getting close to the

.optimized. values. An optimized algorithm was implemented in the

system to see and study how the system response is. However the GA

designed PID is much better in terms of the rise time and the settling

time.

This project has exposed me to various PID control strategies. It has

increased my knowledge in Control Engineering and Genetic Algorithm

in specific. It has also shown me that there are numerous methods of PID

tunings available in the academics and industrial fields. Previously I was

comfortable with Z-N classical methods but now I would like to venture

into others methods available .However this depends on the opportunity

in my work place.

Finally this project has made me more appreciative of the Control

Engineering and its contribution to the improvement of the industrial and

society. The fact is, in every aspect of our life, Control Engineering is

always with us. Let it be in our room, in our car or even in the complex

application of the Biomedical field. As our life improves with more

automated system available in our daily life, be conscious that the

background of these happening is the working of control engineering.

6.2 Further Works

It is hope that this project can be improved to include the implementation

of tuning the PID controller via GA in an online environment. This will

have much impact in the optimization of the system under control .As for

the subject under study, if the plant or the turbine system can be tuned

using GA in an online environment, there will be minimum losses on the

process. The steam used to drive the turbine will be fully utilized and the

energy transferred maximized. There will be minimum loss since the

response shown above is as close to the unit step. Hence in the refineries,

this will translate to better profit margin. It is also hope that in the future

works, the system to be tested with other Performance Criterion such as

IAE, ITAE and ISE. In the current work, due to time constraint, only

MSE as the Performance Criterion was implemented. Hence it was not

known and proven that the MSE will result a better fitness function

measurement.

References

[1] Katsuhiko Ogata, Modern Control Engineering, Upper Saddle River,

NJ, Prentice Hall, 2002.

[2]Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini,

Feedback Control of Dynamic Systems, Upper Saddle River, NJ, Prentice

Hall, 2010

[3]Astrom, K., T. Hagglund, .PID Controllers; Theory, Design and

Tuning.,Instrument Society of America, Research Triangle Park, 1995.

[4] Whitley, A Genetic Algorithm Tutorial, Technical Report CS-93-103,

Dept. of Computer Science, Colorado State University, 1993

[5] Liu Fan, Er Meng Joo” Design for Auto-tuning PID Controller Based

on Genetic Algorithms” Nanyang Technological University Singapore

IEEE Trans on ICIEA 2009

[6] Naeem, W., Sutton, R. Chudley. J, Dalgleish, F.R. and Tetlow, S., .

An Online Genetic Algorithm Based Model Predictive Control Autopilot

Design With Experimental Verification.. International Journal Of

Control,Vol 78, No. 14, pg 1076 . 1090, September 2005.

[7] Skogestad, S., .Probably The Best Simple PID Tuning Rules In The

World.. Journal Of Process Control, September 2001.

Appendix

Matlab Script and Function

Files

Initial_PID_GA.m

%%%%%%%%% Iterating the genetic algorithm

clear

clc

format long;

options = gaoptimset('PlotFcns',...

 {@gaplotbestf});

[X,endPop,bPop,traceInfo] = ga(@PoleAssign,3);

t=0:0.1:10;

y=PoleAssignY(X,t);

fprintf(' Kd = %g \n',X(1));

fprintf(' Kp = %g \n',X(2));

fprintf(' Ki = %g \n',X(3));

figure,plot(t,y);

xlabel('Time [sec]')

ylabel(' Amplitude')

legend('Genetic PID controlller ')

title(' Turbine step response of the Genetic PID controller ')

grid

%%%%%%%%%Plotting Genetic algorithm controller %%%%%%%%

function y=PoleAssignY(X,t)

Kd=X(1);

Kp=X(2);

Ki=X(3);

n = [Kd Kp Ki] *1;

d = [1 6 5 0 0];

s = tf(n,d);

s1 = feedback(s,1);

y = step(s1,t);

%%%%% PID_objfun_mse.m

%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

function F=PoleAssign(X)

Kd=X(1);

Kp=X(2);

Ki=X(3);

t =0:0.1:10;

n = [Kd Kp Ki] *1;

d = [1 6 5 0 0];

s = tf(n,d);

s1 = feedback(s,1);

S = stepinfo(s1)

y = step(s1,t);

for i=1:size(t);

error(i)=1-y(i);

end

%Calculating the MSE

error_sq = error*error';

MSE=error_sq/max(size(error));

%___

_

%Ensuring controlled system is stable

poles=pole(s1);

if poles(1)>0

MSE=10e5;

elseif poles(2)>0

MSE=10e5;

elseif poles(3)>0

MSE=10e5;

elseif poles(4)>0

MSE=10e5;

end

F=MSE;

	Anas Shamil Alhashimi
	Andre
	final_reaserch3108041462355642410
	TEBA SADEE PROJECT

