Course Name: Operating System — Deadlocks

Reference: Stallings W., "Operating Systems: Internals and Design Principles", 7%
Edition, Pearson Education Limited 2012, ISBN 10:0-273-75150-6.

Lecturer: Dr. Sahar A. AL-Talib

Deadlocks

The Deadlock Problem
A set of blocked processes each holding a resource and waiting to acquire a

resource held by another process in the set. For example:

e Asystem has 2 disk drives
e P; and P, each hold one disk drive and each needs another one

System Model

e Resource types Ry, R,,......, R3 [CPU cycles, memory space, I/O devices]

e Each resource type R; has W, instances.

e Each process utilizes a resource as follows:

1. request —> the process acquires the resource it needs from the system which
scans the table of resources.

2. Use =If the resource is available, then use it, otherwise, wait till it released.

3. Release > free the resource after the process finished.

Deadlock can arise if four conditions hold simultaneously.

1. Mutual exclusion: only one process at a time can use a resource.

2. Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes.

3. No preemption: a resource can be released only voluntarily (\= k) by the
process holding it after that process has completed its task.

4. Circular wait: there exists a set {Pg,P,....., po} of waiting processes such that Py
is waiting for a resource that is held by p1, p: is waiting for a resource that is
held by p,, p..1 is waiting for a resource that is held by P,, and P, is waiting for
a resource that is held by P.



Example of Resource Allocation Graph

A\ AN

MERE

A\ A\

\“ :

o
R, *
R4
Figure 1 R, Figure 2
o
R2
.\

Figure 3: Graph with a cycle

Resource Allocation Graph

()

A set of vertices V and a set of edges E:
e V is partitioned into two types:

o P={Py, Py, ...... , Po}, the

set consisting of all the

processes in the system

2



o R={Ry, Ry, ...... , Rm}, the set consisting of all
resource types in the system
e request («1k) edge -- directed edge P, > R
e assignment (J>>) edge — directed edge R; =2 P;

e Process

e Resource type with 4 instances :

e P;requests instance of Rj _> "=

R:
e P;is holding an instance of R; ./ .

Basic Facts
e If the graph contains no cycle ==> no deadlock
e If the graph contains a cycle ==>
o If only one instance per resource type, then
deadlock
o If several instances per resource type, possibility
of deadlock
Methods for handling deadlocks

e Ensure that the system will never enter a deadlock state (deadlock prevention
and avoidance)
o Prevention: ensuring that at least one of the necessary conditions
cannot hold.



o Avoidance: using additional info to decide whether the process must
wait or not to request a resource.
e Allow the system to enter a deadlock state and then recover.
e Ignore the problem and pretend that deadlocks never occur in the system;
used by most operating systems, including UNIX, WINDOWS.

Deadlock Prevention

Restrain the ways request can be made

e Mutual Exclusion — not required for sharable resources; must hold for non-
sharable resources.

¢ Hold and Wait —must guarantee that whenever a process requests a resource,
it does not hold any other resources

o Require process to request and be allocated all its resources before it
begins execution, or allow process to request resources only when the
process has none

o Low resource utilization; starvation possible

e No preemption —

o If a process that is holding some resources requests another resource
that cannot be immediately allocated to it, then all resources currently
being held are released

o Preempted resources are added to the list of resources for which the
process is waiting

o Process will be restarted only when it can regain its old resources, as
well as the new ones that it is requesting

e Circular Wait — impose a total ordering of all resource types, and require that
each process requests resources in an increasing order of enumeration

Deadlock Avoidance
Requires that the system has some additional a priori information available
e Simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need
e The deadlock — avoidance algorithm dynamically examines the resource-
allocation state to ensure that there can never be a circular — wait condition
e Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes



Safe State
e When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state
e System is in safe state if there exists a safe sequence <P, P,, Pj,......, P,> of
all the processes in the system such that for each P;, the resources that P;
can still request can be satisfied by currently available resources +
resources held by all the P; .
e Thatis:
o If P; resource needs are not immediately available, then P; can wait
until all P; have finished
o When P; is finished, P; can obtain needed resources, execute, return
allocated resources, and terminate
o When P; terminates, P; can obtain its needed

Basic facts

e If a systemis in safe state == > no deadlocks

e |[f a systemisin unsafe state == > possibility of deadlock

e Avoidance == > ensure that a system will never enter an unsafe state

Safe, Unsafe, Deadlock State

unsafe

deadlock

safe



Avoidance algorithms

Single instance of a source type
o Use a resource-allocation graph
Multiple instances of a resource type
o Use banker’s algorithm

Resource Allocation Graph Scheme (single instance)

Claim edge P; = R; indicates that process P; may request resource R;
represented by a dashed line

Claim edge converts to request edge when a process requests a resource
Request edge converted to an assignment edge when the resource is allocated
to the process

When a resource is released by a process, assignment edge reconverts to a
claim edge

Resources must be claimed a priori in the system

R1 Rl

S < E
\\ ,/ ~
~
A S ,/ A S
A A A

Rz RZ
Resource Allocation Graph

Resource Allocation Graph Algorithm

Suppose that process P; requests a resource R;

The request can be granted only if converting the request edge to an
assignment edge does not result in the formation of a cycle in the resource
allocation graph



Banker’s Algorithm (multiple instances)

Multiple instances

Each process must a priori claim maximum use

When a process requests a resource it may have to wait

When a process gets all its resources it must return them in a finite amount of
time

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

Available: vector of length m. if available [j] = k, there are k instances of
resource type R; available

Max: (n x m) matrix. If Max [i, j] = k, then process P; may request at most k
instances of resource type R;

Allocation: (n x m) matrix. If Allocation [i, j] = k then P; is currently allocated k
instances of R;

Need: (n x m) matrix. If Need [i, j] = k, then P; may need k more instances of R;
to complete its task

Need [i, j] = (max [i, j] -Allocation [i, j])

Safety Algorithm

1.

Let Work and Finish be vectors of length m and n respectively. Initialize:
Work = Available
Finish [i] = false fori=0, 1, ....,n-1.

Find an index i such that both
a. Finish [i] == false
b. Need; < Work

If no such i exists, go to step 4.



3. work = Work + Allocation,
Finish [i] = true
Go to step 2.
4. If Finish [i] = true for all i, then the system is in a safe state.

This algorithm may require an order of m x n’ operations to determine whether a
state is safe.

Resource — Request Algorithm for Process P;

Request = request vector for process P;. If Request; [j] = k then process P; wants k
instances of resource type R;

1. If Request; < Need; go to step 2. Otherwise, raise error condition, since
process has exceeded its maximum claim

2. If Request; < Availables, go to step 3. Otherwise P; must wait, since
resources are not available

3. Pretend (UaUxd) to allocate requested resources to P; by modifying the state
as follows:

Available = Available — Request;
Allocation; = Allocation; + Request;;
Need; = Need; - Request; ;

e |f safe == > the resources are allocated to P;
e |f unsafe == > P; must wait, and the old resource-allocation state is
restored.



Example of Banker's Algorithm

e 5 processes Py through Py ;

e 3 resource types: A (10 instances), B (5 instances), and C (7 instances),
snapshot at time Ty:

Allocation Max Available Need
ABC ABC ABC ABC
P, 010 753 332 743
P; 200 322 122
P, 302 902 600
P 211 222 011
P, 002 433 431

e The content of the matrix Need is defined to be Max — Allocation

Need

ABC
P, 743
P; 122
P, 600
Ps 011
P, 431

e The system is in a safe state since the sequence < Py, P3, P4, P, Po> satisfies
safety criteria



Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock
avoidance algorithm, then a deadlock situation may occur. So the system may
provide:

e An algorithm that examines the state of the system to determine whether a
deadlock has occurred
e An algorithm to recover from the deadlock

(a) Single instance of each resource type

A detection algorithm called a wait-for graph is used which is obtained from the
resource-allocation graph by removing the resource nodes and collapsing the
appropriate edges. An edge from P; to P; in a wait-for graph implies that process P;
is waiting for process P; to release a resource that P; needs. An edge P; = P; exists
in a wait-for graph if and only if the corresponding resource-allocation graph
contains two edges P; 2 R, and R, = P;for some resource R,. A deadlock exists in
the system if and only if the wait-for graph contains a cycle. To detect deadlocks,
the system needs to maintain the wait-for graph and periodically to recover from
the deadlock invoke an algorithm that searches for a cycle in the graph.

An algorithm to detect a cycle in a graph requires an order of n’ operations,
where n is the number of vertices in the graph.

10



—

R1 Rs Ra

O
i

O
N

Rz RS

(a) Resource-allocation graph (b) Corresponding wait-for graph

(b) Several instances of a resource type

The wait-for graph scheme is not applicable to a resource-allocation system with
multiple instances of each resource type. Instead, a deadlock detection algorithm
similar to those used in banker’s algorithm is applicable. The algorithm employs
several time-varying data structures:

e Auvailable. A vector of length m indicates the number of available resources of
each type.

e Allocation. An n x m matrix defines the number of resources of each type
currently allocated to each process.

e Request. An n x m matrix indicates the current request of each process. If
Request[i][j] equals k, then process P; is requesting k more instances of
resource type R;.

The detection algorithm:

11



1. Let Work and Finish be vectors of length m and n respectively. Initialize:
Work = Available. Fori=0, 1, ....,n-1, if Allocation; # 0, then Finish[i] = false;
Otherwise, Finish [i] = true.

2. Find anindex i such that both
a. Finish [i] == false
b. Request; < Work

If no such i exists, go to step 4.
3. Work = Work + Allocation;
Finish [i] = true
Go to step 2.

4. If Finish [i] = = false for some i, 0 < i < n, then the system is in a deadlocked
state. Moreover, if Finish[i] == false, then process P; is deadlocked.

This algorithm requires an order of m x n’ operations to detect whether the
system is in a deadlocked state.

Detection —Algorithm Usage

When should we invoke the detection algorithm? The answer depends on two
factors:

1. How often is a deadlock likely to occur? If deadlocks occur frequently, then the
detection algorithm should be invoked frequently.
2. How many processes will be affected by deadlock when it happens?

Deadlocks occur only when some process makes a request that cannot be granted
immediately.

We can invoke the deadlock-detection algorithm every time a request for
allocation cannot be granted immediately.

Invoking the deadlock-detection algorithm for every resource request will incur
considerable overhead in computation time. A less expensive alternative is simply
to invoke the algorithm at defined intervals- for example, once per hour or

12



whenever CPU utilization drops below 40%. If the detection-algorithm is invoked
at arbitrary points in time, the resource graph may contain many cycles. In this

case, we generally cannot tell which of the many deadlocked processes caused
the deadlock.

13



