Course Number: EECIE15-S3303
Lecturer: Dr. Sahar Abdul Aziz AL-Talib

Chapter 3 — Operating System Structures

Aspects of operating systems:

1. The services it provides.

2. The interface it makes available to users and programmers.

3. Disassembling the system into its components and their interconnections.

System Components:

0.S. Task: Process Management
A process is a program in execution such as: a batch job, timeshared user program,
spooling output to a printer, ---.
A process needs certain resources, including: CPU time, memory, files, and 1/O
devices to accomplish its task. These resources are either given to the process
when it is created, or allocated to it while it is running. For example:
A process to display the status of a file on the screen,

e The file name will be given as an input,

e Execute the appropriate instructions and system calls to obtain the desired

information,
e Display it on the terminal.

When the process terminates, the O.S. will reclaim any usable resources. A
system is a collection of processes:

e Operating System processes those executes system code

e User processes those executes user code.

Regarding the process management, the O.S. is responsible of:

1. Creation and deletion of user and system processes

2. Suspension and resumption of processes.

3. The provision of mechanisms for process synchronization.

4. The provision of mechanisms for process communication.

5. The provision of mechanisms for deadlock handling (detection, avoidance, and
correction).

0.S. Task: Main-Memory Management

e Main Memory is an array of addressable words or bytes that is quickly
accessible.

e Main Memory is volatile.

e 0.S.is responsible for:
o Allocate and de-allocate memory to processes.
o Managing multiple processes within memory — keep track of which parts
of memory are used by which processes. Manage the sharing of memory
between processes.
o Determining which processes to load when memory becomes available.

0.S. Task: File System Management
File is a collection of related information defined by creator - represents programs
and data.
O.S. is responsible for:
e File creation and deletion
e Directory creation and deletion
e Supporting primitives for file/directory manipulation.
e Mapping files to disks (secondary storage).
e Backup files on archival media (tapes).

0.S. Task: Secondary Storage and Input/Output (I/0) Management
e Since primary storage is expensive and volatile, secondary storage is
required for backup.

e Disk is the primary form of secondary storage.

o O.S. performs storage allocation, free-space management and disk
scheduling.

e |/O systemin the O.S. consists of
o Buffer caching and management
o Device driver interface that abstracts device details
o Drivers for specific hardware devices

0.S. Task: Networking
o Connecting processors in a distributed system
o Distributed System is a collection of processors that do not share memory,
peripheral devices or a clock.
o Processors are connected via a communication network.

o Advantages:
e Allows users and system to exchange information
e provide computational speedup
e increased reliability and availability of information

0.S. Task: Protection and Security
e Protection mechanisms control access of programs and processes to user and
system resources (files, memory segments, CPU, etc).
o Protect user from himself, user from other users, system from users.
e Protection mechanisms must:
o Distinguish between authorized and unauthorized use.
o Specify access controls to be imposed on use.
o Provide mechanisms for enforcement of access control.
o Security mechanisms provide trust in system and privacy.
e Authentication, certification, encryption etc.

Command-Interpreter System

It is the interface between the user and the O.S.

e Some O.S.s include the command interpreter in the kernel.

e Other 0.S.s such as: MS-DOS and UNIX, treat the command interpreter as a
special program that is running when a job is initiated, or when a user first logs
on (e.g., on time-sharing systems).

Many commands are given to O.S. by control statements. When a new job is

started in batch system, or a user logs on to a timeshared system, a program

called shell that reads and interprets control statements is executed automatically.

Operating System Services
e One set of operating-system services provides functions that are helpful to the
user:

o User interface - Almost all operating systems have a user interface (Ul)

» Varies between Command-Line (CLI), Graphics User Interface (GUI).

o Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

o I/0 operations - A running program may require 1/0, which may involve a file

or an 1/O device.

o File-system manipulation- The file system is of particular interest. Obviously,
programs need to read and write files and directories, create and delete them,
search them, list file information, and permission management.
o Communications — Processes may exchange information, on the same
computer or between computers over a network.
» Communications may be via shared memory or through message
passing (packets moved by the O.S.)
o Error detection — O.S. needs to be constantly aware of possible errors
» May occur in the CPU and memory hardware, in I/O devices, in user
program
» For each type of error, O.S. should take the appropriate action to ensure
correct and consistent computing
» Debugging facilities can greatly enhance the user’s and programmer’s
abilities to efficiently use the system
Another set of O.S. functions exists for ensuring the efficient operation of the
system itself via resource sharing
o Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them
» Many types of resources - Some (such as CPU cycles, main memory, and
file storage) may have special allocation code, others (such as 1/O
devices) may have general request and release code.
o Accounting - To keep track of which users use how much and what kinds of
computer resources
o Protection and security - The owners of information stored in a multiuser or
networked computer system may want to control use of that information,
concurrent processes should not interfere with each other
» Protection involves ensuring that all access to system resources is
controlled
» Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts

System Calls

Programming interface to the services provided by the O.S.

Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application Program Interface
(API) rather than direct system call use

e Three most common APIs are Win32 APl for Windows, POSIX API for POSIX-
based systems (including virtually all versions of UNIX, Linux, and Mac OS X),
and Java API for the Java virtual machine (JVM)

Example of System Call
System call sequence to copy the contents of one file to another file

source file p| destination file

q Example System Call Sequence 0

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally -/

A

Reference: Stallings W., "Operating Systems: Internals and Design Principles", 7%

Edition, Pearson Education Limited 2012, ISBN 10:0-273-75150-6.

Process Description and Control
The concept process is fundamental to the structure of modern computer O.Ss in analyzing

problems of:

Synchronization
Deadlock
Scheduling in O.Ss.

Most requirements that OS must meet can be expressed with reference to processes:

The OS must interleave the execution of multiple processes to maximize processor
utilization while providing reasonable response time.

The OS must allocate resources to processes in conformance with a specific policy (e.g.,
certain functions or applications are of higher priority) while at the same time avoiding
deadlock, deadlock occurs if two processes need the same two resources to continue and
each has ownership of one. Unless some action is taken, each process will wait indefinitely
for the missing resource.

The OS may be required to support interprocess communication and user creation of
processes, both of which may aid in the structuring of applications.

How the O.S. can manage the execution of applications so that:

Resources are made available to multiple applications.

The physical processor is switched among multiple applications so all will appear to be
progressing.

The processor and 1/0 devices can be used efficiently.

Processes and Process Control Blocks
There are several definitions of process:

A program in execution

An instance of a program running on a computer

The entity that can be assigned to and executed on a processor

A unit of activity characterized by the execution of a sequence of instructions, a current
state, and an associated set of system resources

An entity that consists of a number of elements (program code and a set of data associated
with that code)

At any given point in time, while the program is executing, this process can be uniquely

characterized by a number of element including those shown in figure-1:

Identifier: to distinguish a process from
other processes.

State: if the process is executing, it is in the
running state.

Priority: relative to other processes.
Program counter: the address of the next
instruction in the program to be executed.
Memory pointers: includes pointers to the
program code + data associated with this
process + any memory blocks shared with
other processes.

Context data: data those are present in
registers in the processor while the process
is executing.

I/0 status information: outstanding 1/0
requests + 1/O devices (e.g., disk drives)
assigned to this process + a list of files in
use by the process +

Accounting information: the amount of
processor time + clock time used + time
limit + account numbers +

Figure-1: Simplified Process Control Block

The information in figure is stored in a data structure, typically called a Process Control Block
(PCB) that is created and managed by the O.S. Thus, a process consists of program code and
associated data plus a process control block.

Process (task) States

Consider a very simple example. Figure-2 shows a memory layout of 3-processes assuming no
use of virtual memory. In addition, there is a small dispatcher program that switches the
processor from on process to another.

Address

100

5000

8000

12000

Main memory

Dispatcher

Process A

Program Counter

8000

Process B

A

Process C

Figure-2: Snapshot of example execution (Figure 4) at Instruction Cycle 13

5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011

8000
8001
8002
8003

12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011

(a)Trace of process A
5000 = Starting address of program of process A
8000 = Starting address of program of process B
12000 = Starting address of program of process C
Figure-3: Trace of Process of Figure 2

(b) Trace of process B

(c) Trace of process C

1 5000 27 12004
2 5001 28 12005
3 5002 Time-out
4 5003 29 100
5 5004 30 101
6 5005 31 102
Time-out 32 103
7 100 33 104
8 101 34 105
9 102 35 5006
10 103 36 5007
11 104 37 5008
12 105 38 5009
13 8000 39 5010
14 8001 40 5011
15 8002 Time-out
16 8003 41 100
I/0 request 42 101
17 100 43 102
18 101 44 103
19 102 45 104
20 103 46 105
21 104 47 12006
22 105 48 12007
23 12000 49 12008
24 12001 50 12009
25 12002 51 12010
26 12003 52 12011

Time-out

100 = Starting address of dispatcher program

Shaded areas indicate execution of dispatcher process;

First and third columns count instruction cycles;

Second and fourth columns show address of instruction being executed;

Figure 4. Combined Trace of Processes of Figure 2

Figure 4 shows the interleaved traces resulting from the first 52 instruction cycles. The shaded
areas represent code executed by the dispatcher. The same sequence of instructions is
executed by the dispatcher in each instance because the same functionality of the dispatcher is
allows a process to continue execution for a maximum of six instruction cycles, after which it is
interrupted;

The Two-State Process Model

The OS's principal responsibility is the execution of processes; this includes:

° Determining the interleaving pattern for execution

° Allocating resources to process

The first step in designing an OS to control processes is to describe the behavior that we would
like the processes to exhibit.

We can construct the simplest possible model by observing that, at any time, a process is either
being executed by a processor or not. In this model, a process may be in one of two states:
Running or Not Running, as shown in Figure 5(a). When the OS creates a new process, it creates

Dispatch
Pause

(a) State transition diagram

&ti’{_, | | | | | Dispatch | processor Exit

Pause

(b) Queueing diagram
Figure 5: Two-State Process Model

a process control block for the process and enters that process into the system in the Not
Running state. The process exists, is known to the OS, and is waiting for an opportunity to
execute. From time to time, the currently running process will be interrupted and the
dispatcher portion of the OS will select some other process to run. The former process moves
from the Running state to the Not Running state, and one of the other processes moves to the
Running state.

Figure 5(b) describes the behavior of the dispatcher in terms of this queuing diagram. A process
that is interrupted is transferred to the queue of waiting processes. Alternatively, if the process
has completed or aborted, it is discarded (exits the system). In either case, the dispatcher takes
another process from the queue to execute.

The Creation and Termination of Processes

The life of a process is bounded by its creation and termination.

10

Table-1: Reasons for Process Creation

New batch job

The OS is provided with batch job control stream, usually on tape or
disk. When the OS is prepared to take on new work, it will read the
next sequence of job control commands.

Interactive log-on

A user at a terminal logs on to the system.

Created by OS to provide a service

The OS can create a process to perform a function on behalf of a use
program, without the user having to wait (e.g., a process to control
printing).

Spawned (&) by existing process

For purposes of modularity or to exploit parallelism, a user program
can dictate the creation of a number of processes.

When one process spawns another, the former is referred to as the
parent process, and the spawned process is referred to as the child
process.

Table-2: Reasons for Process Termination

Normal completion

The process executes an OS service call to indicate that it has completed
running.

Time limit exceeded

Include total elapsed time ("wall clock time"), amount of time spent
executing, and, in the case of an interactive process, the amount of time
since the user last provided any input.

Memory unavailable

Process requires more memory than the system can provide.

Bounds violation

The process tries to access a memory location that it is not allowed to
access.

Protection error

e.g., use a resource such as a file that it is not allowed to use, or writing to
a read only file.

Arithmetic error

Such as: Division by zero or tries to store numbers larger than the H/W can
accommodate.

Time overrun

The process has waited longer than a specified maximum for a certain
event to occur.

I/0O failure

Such as: inability to find a file, failure to read or write after a specified
maximum number of tries, or invalid operation (such as reading from the
line printer).

Invalid instruction

The process attempts to execute a nonexistent instruction.

Privileged instruction

Attempts to use an instruction reserved for the OS.

Data misuse

A piece of data is of the wrong type or is not initialized.

Operator or OS intervention

E.g., if a deadlock exists.

Parent termination

When a parent terminates, the OS may automatically terminate all of the
offspring of that parent.

Parent request

A parent process typically has the authority to terminate any of its
offspring.

A five-State Model

The queue in the two state figure 5 is a FIFO list and the processor operates in round-robin

fashion on the available processes (each process in the queue is given a certain amount of time

returned to the queue, unless blocked waiting for an 1/O operation to complete). Thus using a

single queue, the dispatcher could not just select the process at the oldest end of the queue.

11

Rather the dispatcher would have to scan the list looking for the process that is not blocked and

that has been in the queue the longest.

To handle this situation is to split the Not Running state into two states: Ready and Blocked
as shown in figure 6.

: Dispatch
Admit > Release
New ——>{ Ready | Running — Exit
Time-out
Event
occurs Event
wait
Blocked

Figure 6: Five-State Process Model

The five states in this new diagram are:

Running: the process that is currently being executed.
Assuming a computer with a single processor, so at most one process at a time can be in
this state.

Ready: a process that is prepared to execute when
given the opportunity.

Blocked/Waiting: a process that cannot execute until
some event occurs, such as the completion of an I/O operation.

New: A process that has just been created but has not
yet been admitted to the pool of executable processes by the OS. Typically, a new process
has not yet been loaded into main memory, although its process control block has been
created.

Exit: a process that has been released from the pool of
executable processes by the QS, either because it halted or because it aborted for some
reason.

The possible transitions are as follows:

Null > New

New - Ready
Ready = Running
Running = Exit
Running 2 Ready

12

. Running - Blocked

. Blocked = Ready
o Ready > Exit
. Blocked > Exit

Figure 7 shows the transition of each process among the states.

Process A | | | | |

Process C | | | | |

I I I I I I I I I I [--—--I
0 5 10 15 20 25 30 35 40 45 50

|:| = Running I:l = Ready ! = Blocked

Figure 7: Process States for the Trace of Figure-4

Figure 8 suggests the way in which a queuing discipline might be implemented with two queues:
a Ready queue and a Blocked queue. As each process is admitted to the system, it is placed in
the Ready queue. When it is time for the OS to choose another process to run, it selects one
from the Ready queue. In the absence of any priority scheme, this can be a simple FIFO queue.
When a running process is removed from execution, it is either terminated or placed in the
Ready or Blocked queue, depending on the circumstances. Finally, when an event occurs, any
process in the Blocked queue that has been waiting on that event only is removed to the Ready
queue.

This latter arrangement means that, when an event occurs, the OS must scan the entire blocked
gueue, searching for those processes waiting on that event. In a large OS, there could be
hundreds or even thousands of processes in that queue. Therefore, it would be more efficient
to have a number of queues, one for each event. Then, when the event occurs, the entire list of
processes in the appropriate queue can be moved to the Ready state (Figure 8b).if the
dispatching of processes is dictated by a priority scheme, and then it would be convenient to
have a number of Ready queues, one for each priority level. The OS could then readily
determine which is the highest-priority ready process that has been waiting the longest.

13

o

Ready queue

| | | | | |_p_»Dis atch I processor

Release

(b) Multiple blocked queues

Figure 8: Queueing Model for Figure 6

14

< Time-out

) Blocked queue
Event Event wait
occurs ‘

(a) Single blocked queue
: Ready queue . Release
¢dm"‘t—> | | | | | ’ipat;h, Processor

< Time-out
Event 1) Event 1 queue _
occurs 4—{ | | | | | Event 1 wait
Event 2 Event 2 queue .
occurs 4—{ | | | \ Event 2 wait
Fvent n IEpn Aune \ Event n wait
occurs 4—(| |

»
|

15

