
1

Course Number: EECIE18-S3303
Course Name: Operating System – Special-Purpose Systems
Textbook: Stallings W., ”Operating Systems: Internals and design principles”, 7th Edition, 2012,
Pearson Education Limited, ISBN: 978-0-13-230998-1.
Lecturer: Dr. Sahar AL-talib

Operation of Two-Level Memory
The upper-level memory (M1) is smaller, faster, and more expensive (per bit) than the lower-

level memory (M2). M1 is used as temporary store for part of the contents of the larger M2.

When a memory reference is made, an attempt is made to access the item in M1. If this

succeeds, then a quick access is made. If not, then a block of memory locations is copied from

M2 to M1 and the access then takes place via M1.

Because of locality, once a block is brought into M1, there should be a number of accesses to

locations in that block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the speeds of the two

levels of memory but also the probability that a given reference can be found in M1. We have

Ts = H x T1 + (1 – H) x (T1 + T2)
T1 + (1 – H) x T2

Where

Ts = average (system) access time
T1 = average time of M1 (e.g., cache, disk, cache)
T2 = average time of M2 (e.g., main memory, disk)
H = hit ratio (fraction of time reference is found in M1)

Figure 1 shows average access time as a function of hit ratio. As can be see, for high percentage

of hits, the average total access time is much closer to that of M1 than M2.

 0 1

T1

T2

T1+T2

A
ve

ra
g

e
 a

cc
e

ss
 t
im

e

Fraction of accesses involving only level 1 (Hit ratio)

Figure: Performance of a Simple Two-level Memory

2

Performance

Let us look at some of the parameters relevant to an assessment of a two-level memory

mechanism. First consider cost. We have

Where
Cs = average cost per bit for the combined two-level memory
C1 = average cost per bit of upper-level memory M1
C2 = average cost per bit of lower-level memory M2
S1 = size of M1
S2 = size of M2

We would like Cs ≈ C2. Given that C1 >> C2, this requires S1 << S2 . Figure 2 shows the
relationship.
Next, consider access time. For a two-level memory to provide a significant performance
improvement, we need to have Ts approximately equal to T1Ts ≈ T1.
Given that T1 is much less than T2 Ts >> T1, a hit ratio of close to 1 is needed.
So we would like M1 to be small to hold down cost, and large to improve the hit ratio and
therefore the performance. Is there a size of M1 that satisfies both requirements to a
reasonable extent? We can answer this question with a series of subquestions:

 What value of hit ratio is needed to satisfy the performance requirement?

 What size of M1 will assure the needed hit ratio?

 Does this size satisfy the cost requirement?

1
1000

1000

10

Relative size of two levels (S2/S1)

Figure 2: Relationship of Average Memory Cost to Relative Memory Size for a Two-Level Memory

100

100 10

R
el

at
iv

e
co

m
b

in
ed

 c
o

st
 (

C
s/

C
2)

 (C1/C2) = 10

 (C1/C2) = 100

 (C1/C2) = 1000

 Log scale

 Log scale

3

Virtual memory is a facility that allows programs to address memory from a logical point of

view, without regard to the amount of main memory physically available. Virtual memory was

conceived to meet the requirement of having multiple user jobs reside in main memory

concurrently, so that there would not be hiatus between the executions of successive processes

while one process was written out to secondary store and the successor process was read in.

because processes vary in size, if the processor switches among a number of processes it is

difficult to pack them compactly into main memory. Paging systems were introduced, which

allow processes to be comprised of a number of fixed-size blocks, called pages. A program

references a word by means of a virtual address consisting of a page number and an offset

within the page. Each page of a process may be located anywhere in main memory. The paging

system provides for a dynamic mapping between the virtual address used in the program and a

real address, or physical address, in the main memory.

With dynamic mapping hardware available, the next logical step was to eliminate the

requirement that all pages of a process reside in memory simultaneously. All the pages of a

process are maintained on disk. When a process is executing, some of its pages are in main

memory. If reference is made to a page that is not in main memory, the memory management

hardware detects this and arranges for the missing page to be loaded. Such a scheme is

referred to as virtual memory and is depicted in Figure 3.

 Main Memory Disk

Figure 3: Virtual Memory Concepts

A.1

 A.0 A.2

 A.5

B.0 B.1 B.2 B.3

 A.7

 A.9

 A.8

 B.5 B.6

0 0

 1 1

2 2

3 3

4 4

5 5

6 6

7

8

9

10

User
Program

A

User

Program

4

Main memory
Main memory consists of a number of
fixed-length frames, each equal to the size
of a page.
For a program to execute, some or all of its
pages must be in main memory.

 Disk
Secondary memory (disk) can hold many
fixed-length pages. A user program consists
of some number of pages. Pages for all
programs plus the operating system are on
disk, as are files.

Virtual Machines and Virtualizing

Traditionally, applications have run directly on an OS on a server. Each PC or server would run

only one OS at a time. Thus, the vendor had to rewrite parts of its applications for each

OS/platform they would run on. An effective strategy for dealing with this problem is known as

virtualization. Virtualization technology enables a single PC or server to simultaneously run

multiple operating systems or multiple sessions of a single OS. A machine with virtualization can

host numerous applications, including those that run on different operating systems, on a single

platform. In essence, the host operating system can support a number of virtual machines

(VM), each of which has the characteristics of a particular hardware platform.

The VM approach is becoming a common way for business and individuals to deal with legacy

applications and to optimize their hardware usage by maximizing the number of kinds of

applications that a single computer can handle.

Commercial VM offerings by companies such as VMware and Microsoft are widely used. In

addition to their use in server environments, these VM technologies also are used in desktop

environments to run multiple operating systems, typically Windows and Linux.

The specific architecture of the VM approach varies among vendors. Figure 4 shows a typical

arrangement. The virtual machine monitor (VMM), or hypervisor, runs on top of (or is

incorporated into) the host OS. The VMM supports VMs, which are emulated hardware devices.

Each VM runs a separate OS. The VMM handles each operating system’s communications with

the processor, the storage medium, and the network. To execute programs, the VMM hands off

the processor control to a virtual OS on a VM. Most VMs use virtualized network connections to

communicate with one another, when such communication is needed. Key to the success of

this approach is that the VMM provides a layer between software environments and the

underlying hardware and host OS that is programmable, transparent to the software above it,

and makes efficient use of the hardware below it.

5

Applications
And

processes

Applications
And

processes
…

Applications
And

processes

Virtual
Machine 1

Virtual

Machine 2
…

Virtual
Machine 3

Virtual machine monitor

Host operating system

Shared hardware

 Figure 4: Virtual Memory Concept

OS Design considerations for Multiprocessor and Multicore

Symmetric Multiprocessor (SMP) OS considerations

An SMP operating system manages processor and other computer resources so that the user

may view the system in the same fashion as a multiprogramming uniprocessor system. A user

may construct applications that use multiple processes or multiple threads within processes

without regard to whether a single processor or multiple processors will be available.

The key design issues include the following:

 Simultaneous متزامن في وقت واحد concurrent متزامن processes or threads (A thread of execution is the

smallest sequence of programmed instructions that can be managed independently by

an operating system scheduler. A thread is a light-weight process).: Kernel routines need to

be reentrant قابل للتعامل مع عدة طلبات بنفس الوقت to allow several processors to execute the same kernel

code simultaneously.

 Scheduling: Any processor may perform scheduling, which complicates the task of enforcing

a scheduling policy and assuring that corruption of the scheduler data structures is avoided.

If kernel-level multithreading is used, then the opportunity exists to schedule multiple

threads from the same process simultaneously on multiple processors.

 Synchronization: it is a facility that enforces mutual exclusion and event ordering.

 Memory management: the paging mechanism on different processors must be coordinated

to enforce consistency when several processors share a page or segment and to decide on

page replacement. The reuse of physical pages is the biggest problem of concern; that is, it

must be guaranteed that a physical page can no longer be accessed with its old contents

before the page is put to a new use.

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Light-weight_process

6

 Reliability and fault tolerance: The OS should provide graceful degradation in the face of

processor failure. The scheduler and other portions of the OS must recognize the loss of a

processor and restructure management tables accordingly.

Multicore OS Considerations

Current multicore vendors offer systems with up to eight cores on a single chip. The design

challenge for a many-core multicore system is to efficiently harness the multicore processing

power and intelligently manage the substantially on-chip resources efficiently. A central

concern is how to match the inherent parallelism of a many-core system with the performance

requirements of applications. The potential for parallelism in fact exists at three levels in

contemporary multicore system.

1. There is H/W parallelism within each core processor, known as instruction level parallelism,

which may or may not be exploited by application programmers and compilers.

2. There is the potential for multiprogramming and multithreaded execution within each

processor.

3. There is the potential for a single application to execute in concurrent processes or threads

across multiple cores.

Without strong and effective OS support for the last two types of parallelism just mentioned,

hardware resources will not be efficiently used.

