
1

Course Number: EECIE18-S3303
Course Name: Operating System – Processes and Threads
Lecturer: Dr. Sahar Abdul Aziz AL-talib

The Process Model:

• Multiprogramming of four programs
• Conceptual model of 4 independent, sequential processes
• Only one program active at any instant

Process States:

• Possible process states
– running
– blocked
– ready

2

• Lowest layer of process-structured OS
– handles interrupts, scheduling

• Above that layer are sequential processes

Threads:
A thread is a basic unit of CPU utilization; it comprises a thread ID, program
counter, a register set and a stack. It shares with other threads belonging to the
same process its code section, data section, and other operating system
resources, such as open files and signals.

 Process with single thread of control is called heavy weight process.

 Process with multiple threads of control can perform more than one task at a
time.

The thread Model:

(a) Three processes each with one thread (b) One process with three threads

2 3

3

Items shared by all threads in a process Items private to each thread

Each thread has its own stack

4

Thread Usage Examples:

Figure : A word processor with three threads

Figure: A multithreaded Web server

5

(a) Dispatcher thread (b) Worker thread

Implementing Threads in User Space:

Figure: A user-level threads package

6

Implementing Threads in the Kernel:

Figure: A threads package managed by the kernel

7

Hybrid Implementations:

Figure: Multiplexing user-level threads onto kernel- level threads

Scheduler Activations:

• Goal – mimic functionality of kernel threads

– gain performance of user space threads

• Avoids unnecessary user/kernel transitions

• Kernel assigns virtual processors to each process

– lets runtime system allocate threads to processors

• Problem:

 Fundamental reliance on kernel (lower layer)

 calling procedures in user space (higher layer)

8

Pop-Up Threads:

Figure: Creation of a new thread when message arrives

 (a) before message arrives (b) after message arrives

9

A single application may be required to perform several similar tasks. Since

process creation is time consuming and resource intensive, so it is more efficient

to use one process that contains multiple threads instead of using multiple

processes.

Many operating system kernels are now multithreaded; several threads operate

in the kernel and each thread performs a specific task, such as managing devices

or interrupt handling.

Benefits of Multithreading:

1. Interactive application may allow a program to continue running even if part of

it is blocked or is performing a lengthy operation.

2. Resource sharing: by default, threads share the memory and the resources of

the process to which they belong.

3. Economy: because threads share resources of the process to which they

belong, it is more economical to create and context-threads. In general, It is

much more time consuming to create and manage processes than threads.

4. Utilization of multiprocessor architectures: the benefits of multithreading can

be greatly increased in a multiprocessor architecture, where threads may be

running in parallel on different processors.

code data files

registers stack

thread

Single-threaded process

code data files

registers

stack

thread

registers registers

stack stack

Multi-threaded process

