
1

Course Number: EECIE14-S3303
Course Name: Operating System – Deadlocks
Reference: Stallings W., "Operating Systems: Internals and Design Principles", 7th
 Edition, Pearson Education Limited 2012, ISBN 10:0-273-75150-6.
Lecturer: Dr. Sahar A. AL-Talib
-- Deadlocks ---
The Deadlock Problem
A set of blocked processes each holding a resource and waiting to acquire a

resource held by another process in the set. For example:

 A system has 2 disk drives

 P1 and P2 each hold one disk drive and each needs another one

System Model

 Resource types R1, R2,……, R3 [CPU cycles, memory space, I/O devices]

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

1. request  the process acquires the resource it needs from the system which

scans the table of resources.

2. Use If the resource is available, then use it, otherwise, wait till it released.

3. Release  free the resource after the process finished.

Deadlock can arise if four conditions hold simultaneously.

1. Mutual exclusion: only one process at a time can use a resource.

2. Hold and wait: a process holding at least one resource is waiting to acquire

additional resources held by other processes.

3. No preemption: a resource can be released only voluntarily (طوعا) by the

process holding it after that process has completed its task.

4. Circular wait: there exists a set {P0,P1,….., p0} of waiting processes such that P0

is waiting for a resource that is held by p1, p1 is waiting for a resource that is

held by p2, pn-1 is waiting for a resource that is held by Pn, and P0 is waiting for

a resource that is held by P0.

2

Resource Allocation Graph

A set of vertices V and a set of edges E:

 V is partitioned into two types:
o P = {P1, P2, ……, Pn}, the set consisting of all the

processes in the system

P1 P2 P3 P1 P2 P3

R1 R3 R1 R3

R4

R2

R4

R2

Figure 1 Figure 2

Example of Resource Allocation Graph

R1

R2

P1

P3

P2

P4

Figure 3: Graph with a cycle

3

o R = {R1, R2, ……, Rm}, the set consisting of all
resource types in the system

 request (طلب) edge -- directed edge Pi  Rj

 assignment (حجز) edge – directed edge Rj  Pi

 Process

 Resource type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Basic Facts

 If the graph contains no cycle ==> no deadlock

 If the graph contains a cycle ==>
o If only one instance per resource type, then

deadlock
o If several instances per resource type, possibility

of deadlock
Methods for handling deadlocks
 Ensure that the system will never enter a deadlock state (deadlock prevention

and avoidance)
o Prevention: ensuring that at least one of the necessary conditions

cannot hold.

Pi

Pi

Rj

Pi

Rj

4

o Avoidance: using additional info to decide whether the process must
wait or not to request a resource.

 Allow the system to enter a deadlock state and then recover.

 Ignore the problem and pretend that deadlocks never occur in the system;
used by most operating systems, including UNIX, WINDOWS.

Deadlock Prevention
Restrain the ways request can be made

 Mutual Exclusion – not required for sharable resources; must hold for non-
sharable resources.

 Hold and Wait –must guarantee that whenever a process requests a resource,
it does not hold any other resources

o Require process to request and be allocated all its resources before it
begins execution, or allow process to request resources only when the
process has none

o Low resource utilization; starvation possible

 No preemption –
o If a process that is holding some resources requests another resource

that cannot be immediately allocated to it, then all resources currently
being held are released

o Preempted resources are added to the list of resources for which the
process is waiting

o Process will be restarted only when it can regain its old resources, as
well as the new ones that it is requesting

 Circular Wait – impose a total ordering of all resource types, and require that
each process requests resources in an increasing order of enumeration

Deadlock Avoidance
Requires that the system has some additional a priori information available

 Simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need

 The deadlock – avoidance algorithm dynamically examines the resource-
allocation state to ensure that there can never be a circular – wait condition

 Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes

5

Safe State
 When a process requests an available resource, system must decide if

immediate allocation leaves the system in a safe state

 System is in safe state if there exists a safe sequence <P1, P2, P3,……, Pn> of
all the processes in the system such that for each Pi, the resources that Pi
can still request can be satisfied by currently available resources +
resources held by all the Pj .

 That is:
o If Pi resource needs are not immediately available, then Pi can wait

until all Pj have finished
o When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate
o When Pi terminates, Pj can obtain its needed

Basic facts
 If a system is in safe state == > no deadlocks

 If a system is in unsafe state == > possibility of deadlock

 Avoidance == > ensure that a system will never enter an unsafe state

Safe, Unsafe, Deadlock State

deadlock

unsafe

safe

6

Avoidance algorithms
 Single instance of a source type

o Use a resource-allocation graph

 Multiple instances of a resource type
o Use banker’s algorithm

Resource Allocation Graph Scheme (single instance)

 Claim edge Pi  Rj indicates that process Pi may request resource Rj
represented by a dashed line

 Claim edge converts to request edge when a process requests a resource

 Request edge converted to an assignment edge when the resource is allocated
to the process

 When a resource is released by a process, assignment edge reconverts to a
claim edge

 Resources must be claimed a priori in the system

Resource Allocation Graph Algorithm

 Suppose that process Pi requests a resource Rj

 The request can be granted only if converting the request edge to an

assignment edge does not result in the formation of a cycle in the resource

allocation graph

P1 P2

R2

P1 P2

R2

Resource Allocation Graph

R1 R1

7

Banker’s Algorithm (multiple instances)

 Multiple instances

 Each process must a priori claim maximum use

 When a process requests a resource it may have to wait

 When a process gets all its resources it must return them in a finite amount of

time

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

 Available: vector of length m. if available [j] = k, there are k instances of

resource type Rj available

 Max: (n x m) matrix. If Max [i, j] = k, then process Pi may request at most k

instances of resource type Rj

 Allocation: (n x m) matrix. If Allocation [i, j] = k then Pi is currently allocated k

instances of Rj

 Need: (n x m) matrix. If Need [i, j] = k, then Pi may need k more instances of Rj

to complete its task

Need [i, j] = (max [i, j] -Allocation [i, j])

Safety Algorithm

1. Let Work and Finish be vectors of length m and n respectively. Initialize:

Work = Available

Finish [i] = false for i = 0, 1, ….,n-1.

2. Find an index i such that both
a. Finish [i] == false
b. Needi ≤ Work

If no such i exists, go to step 4.

8

3. work = Work + Allocationi

Finish [i] = true

Go to step 2.

4. If Finish [i] = true for all i, then the system is in a safe state.

This algorithm may require an order of m x n2 operations to determine whether a
state is safe.

Resource – Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti [j] = k then process Pi wants k

instances of resource type Rj

1. If Requesti ≤ Needj go to step 2. Otherwise, raise error condition, since

process has exceeded its maximum claim

2. If Requesti ≤ Availables, go to step 3. Otherwise Pi must wait, since

resources are not available

3. Pretend (تظاهر) to allocate requested resources to Pi by modifying the state

as follows:

Available = Available – Request;

Allocationi = Allocationi + Requesti ;

Needi = Needi - Requesti ;

 If safe == > the resources are allocated to Pi

 If unsafe == > Pi must wait, and the old resource-allocation state is

restored.

9

Example of Banker's Algorithm

 5 processes P0 through P4 ;

 3 resource types: A (10 instances), B (5 instances), and C (7 instances),

snapshot at time T0:

 Allocation Max Available Need
 A B C ABC ABC ABC

P0 010 753 332 743

P1 200 322 122
P2 302 902 600

P3 211 222 011
P4 002 433 431

 The content of the matrix Need is defined to be Max – Allocation

 Need

 ABC

P0 743
P1 122

P2 600
P3 011

P4 431

 The system is in a safe state since the sequence < P1 , P3, P4, P2, P0> satisfies

safety criteria

10

Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock

avoidance algorithm, then a deadlock situation may occur. So the system may

provide:

 An algorithm that examines the state of the system to determine whether a

deadlock has occurred

 An algorithm to recover from the deadlock

(a) Single instance of each resource type

A detection algorithm called a wait-for graph is used which is obtained from the

resource-allocation graph by removing the resource nodes and collapsing the

appropriate edges. An edge from Pi to Pj in a wait-for graph implies that process Pi

is waiting for process Pj to release a resource that Pi needs. An edge Pi  Pj exists

in a wait-for graph if and only if the corresponding resource-allocation graph

contains two edges Pi  Rq and Rq  Pi for some resource Rq. A deadlock exists in

the system if and only if the wait-for graph contains a cycle. To detect deadlocks,

the system needs to maintain the wait-for graph and periodically to recover from

the deadlock invoke an algorithm that searches for a cycle in the graph.

An algorithm to detect a cycle in a graph requires an order of n2 operations,

where n is the number of vertices in the graph.

11

(b) Several instances of a resource type

The wait-for graph scheme is not applicable to a resource-allocation system with

multiple instances of each resource type. Instead, a deadlock detection algorithm

similar to those used in banker’s algorithm is applicable. The algorithm employs

several time-varying data structures:

 Available. A vector of length m indicates the number of available resources of

each type.

 Allocation. An n x m matrix defines the number of resources of each type

currently allocated to each process.

 Request. An n x m matrix indicates the current request of each process. If

Request[i][j] equals k, then process Pi is requesting k more instances of

resource type Rj.

The detection algorithm:

P1

P5

P2
P3

P4

R1 R3 R4

R5 R2

P1 P3

P4

P2

P5

(a) Resource-allocation graph (b) Corresponding wait-for graph

12

1. Let Work and Finish be vectors of length m and n respectively. Initialize:

Work = Available. For i = 0, 1, ….,n-1, if Allocationi ≠ 0, then Finish[i] = false;

Otherwise, Finish [i] = true.

2. Find an index i such that both
a. Finish [i] == false
b. Requesti ≤ Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish [i] = true

Go to step 2.

4. If Finish [i] = = false for some i, 0 ≤ i < n, then the system is in a deadlocked
state. Moreover, if Finish[i] == false, then process Pi is deadlocked.

This algorithm requires an order of m x n2 operations to detect whether the
system is in a deadlocked state.

Detection –Algorithm Usage

When should we invoke the detection algorithm? The answer depends on two
factors:

1. How often is a deadlock likely to occur? If deadlocks occur frequently, then the
detection algorithm should be invoked frequently.

2. How many processes will be affected by deadlock when it happens?

Deadlocks occur only when some process makes a request that cannot be granted
immediately.

We can invoke the deadlock-detection algorithm every time a request for
allocation cannot be granted immediately.

Invoking the deadlock-detection algorithm for every resource request will incur
considerable overhead in computation time. A less expensive alternative is simply
to invoke the algorithm at defined intervals- for example, once per hour or

13

whenever CPU utilization drops below 40%. If the detection-algorithm is invoked
at arbitrary points in time, the resource graph may contain many cycles. In this
case, we generally cannot tell which of the many deadlocked processes caused
the deadlock.

