Course Number: EECIE18-S3303
Course Name: Operating System — Processes and Threads
Lecturer: Dr. Sahar Abdul Aziz AL-talib

The Process Model:

One program counter

— Four program counters
A Process
E switch 2 D —_ —_
Y B 9
o
G A l BY G i DY B —_ —_
(= AL —
w D Time —
(a) (b) ()

* Multiprogramming of four programs
* Conceptual model of 4 independent, sequential processes
* Only one program active at any instant

Process States:

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Blocked

* Possible process states
— running
— blocked
— ready

Processes

Scheduler

* Lowest layer of process-structured OS
— handles interrupts, scheduling
* Above that layer are sequential processes

Threads:

A thread is a basic unit of CPU utilization; it comprises a thread ID, program
counter, a register set and a stack. It shares with other threads belonging to the
same process its code section, data section, and other operating system
resources, such as open files and signals.

e Process with single thread of control is called heavy weight process.

e Process with multiple threads of control can perform more than one task at a

time.
The thread Model:

Process 1 Process 2 Process 3 Process
\\ | | i
User)
space
Thread Thread
Kernel
space Kernel Kernel

(a) (b)
(a) Three processes each with one thread (b) One process with three threads

2

Per process items
Address space
Global variables
Open files

Child processes
Pending alarms

Signals and signal handlers

Accounting informa

tion

Per thread items
Program counter
Registers

Stack

State

Items shared by all threads in a process

Thread 1
\

Thread 2

Thread 3
/

Items private to each thread

Thread 1's

xR

|_—~ Process

stack

N

Thread 3's stack

Kernel

Each thread has its own stack

Thread Usage Examples:

finished | [they gave the last full
of devotion,

measure

Kernel
Keyboard Disk

Figure : A word processor with three threads

Web server process

Dispatcher thread

- »27% Worker thread > S%Zire

Web page cache

Kernel
Kernel space

Network
connection

Figure: A multithreaded Web server

while (TRUE) { while (TRUE) {

get_next_request{&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page)

read_page_from_disk(&buf, &page);
return_page(&page);
}
(a) (b)
(a) Dispatcher thread (b) Worker thread

Implementing Threads in User Space:
Process Thread

__/

i \
User
space <
=

—

Kernel

space Kernel .

/ X
Run-time Thread Process

system table table

Figure: A user-level threads package

Implementing Threads in the Kernel:
Process Thread

__/

\

Kernel
—
Process Thread
table table

Figure: A threads package managed by the kernel

Hybrid Implementations:

Multiple user threads
on a kernel thread

_]

-
> User
space
J
Kernel
Kernel <— Kernel thread space

Figure: Multiplexing user-level threads onto kernel- level threads

Scheduler Activations:

Goal — mimic functionality of kernel threads

— gain performance of user space threads

Avoids unnecessary user/kernel transitions

Kernel assigns virtual processors to each process

— lets runtime system allocate threads to processors

Problem:
Fundamental reliance on kernel (lower layer)

calling procedures in user space (higher layer)

Pop-Up Threads:

Pop-up thread
Process created to handle

Existing thread

/

incoming message

Incoming message)

Network
(a) (b)

Figure: Creation of a new thread when message arrives

(a) before message arrives (b) after message arrives

code data files code data files
registers stack registers registers registers
stack stack stack
thread — thre¢ad ’
Single-threaded process Multi-threaded process

A single application may be required to perform several similar tasks. Since

process creation is time consuming and resource intensive, so it is more efficient

to use one process that contains multiple threads instead of using multiple

processes.

Many operating system kernels are now multithreaded; several threads operate

in the kernel and each thread performs a specific task, such as managing devices

or interrupt handling.

Benefits of Multithreading:

1.

Interactive application may allow a program to continue running even if part of
it is blocked or is performing a lengthy operation.

. Resource sharing: by default, threads share the memory and the resources of

the process to which they belong.

. Economy: because threads share resources of the process to which they

belong, it is more economical to create and context-threads. In general, It is
much more time consuming to create and manage processes than threads.
Utilization of multiprocessor architectures: the benefits of multithreading can
be greatly increased in a multiprocessor architecture, where threads may be
running in parallel on different processors.

9

