Course Number: EECIE17-S3303

Course Name: Operating System

Credit Hours: (4,2,0,0) (Units, Theory, Tutorial, Practical)
Lecturer: Dr. Sahar Abdulaziz Altalib

Chapter 1 - Introduction and Overview

Computer System Components

e Hardware

o Provides basic computing resources (CPU, memory, I/O devices).
e Operating System
o Controls and coordinates the use of hardware among application programs.

e Application Programs

o Solve computing problems of users (compilers, database systems, video
games, business programs such as banking software).

e Users

o People, machines, other computers

User-1

User-2

User-3

l

l

l

User-n

\

compiler assembler text editor

Database system

System and Application Programs

Operating System

Computer Hardware

Introduction
What is an Operating System (0S)?

e An OS is a program that acts an intermediary between the user of a computer
and computer hardware.
e Major cost of general purpose computing is software.
o OS simplifies and manages the complexity of running application
programs efficiently.

Goals of an Operating System
e Simplify the execution of user programs and make solving user problems
easier.
e Use computer hardware efficiently.
o Allow sharing of hardware and software resources.
e Make application software portable and versatile.
e Provide isolation, security and protection among user programs.
e Improve overall system reliability
o Error confinement, fault tolerance, reconfiguration.

Why should I study Operating Systems?

¢ Need to understand interaction between the hardware and applications
o New applications, new hardware.
o Inherent aspect of society today
e Need to understand basic principles in the design of computer systems
o efficient resource management, security, flexibility
e Increasing need for specialized operating systems
o e.g.embedded operating systems for devices - cell phones,
sensors and controllers
o real-time operating systems - aircraft control, multimedia services

Hardware Complexity Increases
Moore’s Law: 2X transistors/Chip Every 1.5 years

WIS 1980 @EL 1880 1998

4

10M Micro 500
{rarsiston) ' S imips)

i1 * Pantivm” 25

048G Processor
100K @ 1A03RE 10
‘ BOZ2BE
10K . SoRE 0.1
BOS0

004 .01

epEce & NT
ghide (1ee2) (i2e2)
el

y-axis: 0-10-20-30-40-50-60 Millions of lines of source code

x-axis: NASA space shuttle control, Windows 3.1 (1992), Windows NT
(1992), Solaris (1998), Windows 95, Windows 98, Windows NT5.0 (1998),
RedHat Linux 6.2 (2000), RedHat Linux 7.1 (2001), Windows XP, Vista

Operating System Views

Resource allocator
o To allocate resources (software and hardware) of the computer system
and manage them efficiently.
Control program
o Controls execution of user programs and operation of I/O devices.

Kernel
o The program that executes forever (everything else is an application
with respect to the kernel).

Operating System Spectrum

Monitors and Small Kernels
o special purpose and embedded systems, real-time systems
Batch and multiprogramming

Timesharing
o workstations, servers, minicomputers, timeframes
Transaction systems

Personal Computing Systems

Mobile Platforms, devices (of all sizes)

Early Systems - Bare Machine (1950s)
Hardware — expensive; Human — cheap

Structure
o Large machines run from console
o Single user system
eProgrammer/User as operator
o Paper tape or punched cards

Early software
o Assemblers, compilers, linkers, loaders, device drivers, libraries of
common subroutines.
Secure execution

Inefficient use of expensive resources
o Low CPU utilization, high setup time.

Simple Batch Systems (1960’s)
Reduce setup time by batching jobs with similar requirements.

Add a card reader, Hire an operator
o Useris NOT the operator
o Automatic job sequencing
o Forms a rudimentary (being in the earliest stages of development) OS.
o Resident Monitor
o Holds initial control, control transfers to job and then back to
monitor.
o Problem
o Need to distinguish job from job and data from program.

Supervisor/Operator Control
Secure monitor that controls job processing
o Special cards indicate what to do.
o User program prevented from performing I/O
Separate user from computer
o User submits card deck
o cards put on tape
o tape processed by operator
o output written to tape
o tape printed on printer
Problems
Long turnaround time - up to 2 DAYS!!!
o Low CPU utilization
*|/0O and CPU could not overlap; slow mechanical devices.

O

Batch Systems — Issues
Solutions to speed up I/0:

Offline Processing

o Load jobs into memory from tapes, card reading and line printing are
done offline.

Spooling (putting jobs in a buffer, a special area in memory or on a disk where a
device can access them when it is ready)

o Use disk (random access device) as large storage for reading as many
input files as possible and storing output files until output devices are
ready to accept them.

o Allows overlap - I/O of one job with computation of another.

o Introduces notion of a job pool that allows OS choose next job to run
so as to increase CPU utilization.

Batch Systems - 1/0 completion
How do we know that I/O is complete? Polling:
o Device sets a flag when it is busy.
o Program tests the flag in a loop waiting for completion of 1/0.
Interrupts:
o On completion of 1/0, device forces CPU to jump to a specific
instruction address that contains the interrupt service routine.
o After the interrupt has been processed, CPU returns to code it was
executing prior to servicing the interrupt.

Multiprogramming
Use interrupts to run multiple programs simultaneously
o When a program performs 1/0, instead of polling, execute another
program till interrupt is received.
Requires secure memory, I/0O for each program.

Requires intervention if program loops indefinitely.

Requires CPU scheduling to choose the next job to run.

Timesharing
Hardware — getting cheaper; Human — getting expensive
Programs queued for execution in FIFO order.

Like multiprogramming, but timer device interrupts after a quantum (time slice).
o Interrupted program is returned to end of FIFO
o Next program is taken from head of FIFO
Control card interpreter replaced by command language interpreter (CLI).
Interactive (action/response)
o When OS finishes execution of one command, it seeks the next
control statement from user.
File systems
o Online file system is required for users to access data and code.
Virtual memory
o Job is swapped in and out of memory to disk.

Personal Computing Systems
Hardware — cheap; Human — expensive
Single user systems, portable.

I/O devices - keyboards, mice, display screens, small printers.
Laptops and palmtops, Smart cards, Wireless devices.

Single user systems may not need advanced CPU utilization or protection
features.

Advantages:
O User convenience, responsiveness, ubiquitous

Parallel Systems
e Multiprocessor systems with more than one CPU in close communication.
Improved Throughput, economical, increased reliability.
Kinds:
o Vector and pipelined
o Symmetric and asymmetric multiprocessing
o Distributed memory vs. shared memory
Programming models:

o Tightly coupled vs. loosely coupled, message-based vs. shared
variable

Distributed Systems
Hardware — very cheap; Human — very expensive
Distribute computation among many processors.
Loosely coupled -
o no shared memory, various communication lines

client/server architectures
Advantages:

o resource sharing

o computation speed-up

o reliability

O communication - e.g. email
Applications - digital libraries, digital multimedia

Real-time systems
e Correct system function depends on timeliness
e Feedback/control loops
e Sensors and actuators
e Hard real-time systems -
o Failure if response time too long.
o Secondary storage is limited
e Soft real-time systems -
o Less accurate if response time is too long.
o Useful in applications such as multimedia, virtual reality.

Chapter 2 — Computer System Structure

disk disk printer monitor

on-line
i

mouse keyboard

graphics
disk adapter

CPU controller controller

<+—— system bus

memory controller — Synchronize access to
the memory

memory

Figure 2.1: Computer System Architecture

Computer-System Operation

I/O devices and the CPU can execute concurrently.

Each device controller is in charge of a particular device type.
Each device controller has a local buffer.

CPU moves data from/to main memory to/from local buffers

I/O is from the device to local buffer of controller.

Device controller informs CPU that it has finished its operation by

causing an interrupt.

For computer to start running, it needs to have an initial program to run. It is
the bootstrap program, it initializes:

» CPU registers

» Device controllers

» Memory contents

The bootstrap program must locate and load into memory the operating
system kernel and waits for some event (interrupt) to occur.

Hardware interrupt - triggered by sending a signal to the CPU by way of
system bus.

Software interrupts = by executing a system call.

Types of events that may trigger an interrupt:
1. Completion of an I/O operation

2. Division by zero
3. Invalid memory access

4. Request for some operating system service

To deal with interrupt, a service routine is provided. The routine will call the
interrupt specific-handler. A table of pointers to interrupt routines can be

used instead. The table is stored in low memory (first 100 or so locations).

Common Functions of Interrupts
e Interrupt transfers control to the interrupt service routine generally,

through the interrupt vector, which contains the addresses of all the

service routines.

10

Interrupt architecture must save the address of the interrupted

instruction.

Incoming interrupts are disabled while another interrupt is being

processed to prevent a lost interrupt.

A trap is a software-generated interrupt caused either by an error or a

user request.

Modern operating system is interrupt driven.

Interrupt Handling
e The operating system preserves the state of the CPU by storing

registers and the program counter.
e Determines which type of interrupt has occurred:
e Separate segments of code determine what action should be taken for

each type of interrupt

I/O Structure
e Synchronous I/O: After I/O starts, control returns to user program only

upon I/O completion.

4+ Wait instruction idles the CPU until the next interrupt
4+ Wait loop (contention for memory access).

4+ At most one /O request is outstanding at a time, no simultaneous

I/O processing.

e Asynchronous I/O: After I/O starts, control returns to user program

without waiting for 1/0O completion.

11

4+ System call — request to the operating system to allow user to wait

for 1/O completion.

4+ Device-status table contains entry for each I/O device indicating its

type, address, and state.

4+ Operating system indexes into 1/0O device table to determine device

status and to modify table entry to include interrupt.

Two I/O Methods

requesting process
waiting

user {

4

~

device driver

A reduesting process

kernel < 1 interrupt handler
\

device driver

hardware

— (ata tfransfer

1

'
r interrupt handler

HiME m—

Synchronous /O

12

|_|_ hardware
= = data transfer

time ——

Asynchronous I/O

} user

~

+ kernel

Device-Status Table

device: card reader 1

status: idle

device: line printer 3 _ request for __l‘

status: busy line printer

address: 38546

device: disk unit 1 length: 1372

status: idle

device: disk unit 2

status: idle

SR 2 SCike —— request for —— request for N

tatus:

status: busy disk unit 3 disk unit 3
file: xxx file: yyy
operation: read operation: write
address: 43046 address: 03458
length: 20000 length: 500

Direct Memory Access Structure
e Used for high-speed I/O devices able to transmit information at close to

memory speeds.

e Device controller transfers blocks of data from buffer storage directly to
main memory without CPU intervention.

e Only one interrupt is generated per block, rather than the one interrupt
per byte.

Storage Structure
e Main memory — only large storage media that the CPU can access

directly.
e Secondary storage — extension of main memory that provides large

nonvolatile storage capacity.

13

e Magnetic disks — rigid metal or glass platters (=<=) covered with

magnetic recording material

4+ Disk surface is logically divided into tracks, which are subdivided into

sectors.

4+ The disk controller determines the logical interaction between the

device and the computer.

Moving-Head Disk Mechanism

track ¢ «— spindle

..
- 4
A

— arm assembly

sector s

read-write

head
{

|
cylinder ¢ —»1
|

platter

rotation

14

Storage Hierarchy
e Storage systems organized in hierarchy based on:

4+ Speed
4+ Cost

4+ Volatility

e Caching — copying information into faster storage system; main memory
can be viewed as a last cache for secondary storage.

Storage-Device Hierarchy

Faster, more expenswe/" registers u
and smaller size 5 Il

i h 4 ‘
cache
L) [l
I Vv ‘
main memory
L Il
| Y ‘
electronic disk

& |
i v ‘

magnetic disk

ft

|
= ‘

Flashes, hard disks

DVDs,|CDs optical disk

ft

|
L v

maghnetic tapes

15

When we need a particular piece of information:

1. Checkthe cache, if it is there, use the information directly.

2. Ifitis not, use the information from the main storage system.
Caching Types:

1. The programmer (or compiler) implements the register-allocation and register-
replacement algorithms to decide which information to keep in registers and
which to keep in main memory.

2. Hardware-only caches: caches that are implemented totally in HW. Most
systems have an instructions expected to be executed. This type is outside of
the control of the operating system.

3. Software controlled caches: since caches have limited size. Cache management
is an important design problem. Careful selection of the cache size and of a
replacement policy can result in 80-90% of all accesses being in the cache,
causing extremely high performance.

4. Main memory can be viewed as a fast cache for secondary memory, since data
on secondary storage must be copied into main memory for use, and data
must be in memory before being moved to secondary storage for safekeeping.

This is usually controlled by the operating system.

Coherency (&%) and Consistency (4i;Uas)

In a hierarchical storage structure, the same data may appear in different levels of
the storage system. For example, consider an integer A located in the file B

resides on magnetic disk that is to be incremented by 1:

16

3.
4.

Issue an 1/O operation to copy the disk block on which A resides to main
memory.

Copy A to the cache, and by a copying of A to an internal register.

The increment takes place in the internal register.

The new value of A is written back to the magnetic disk.

The copy of A appears in several places.

Cache coherency problem occurs in multiprocessor environment where a copy of

A may exist simultaneously in several caches. It is a hardware issue.

In distributed environment, the situation becomes more complex. Several copies

of the same file can be kept on different computers that are distributed in space.

17

